
CSE 591: GPU Programming 

 

 Memories: Global  

Klaus Mueller 

 

Computer Science Department 

Stony Brook University 

Code examples from Shane Cook “CUDA Programming”  



A Note on Program Timing 

On CPU  

• use get_time() to obtain start and end time 

• execution time = end - start 

On GPU 

• after executing the kernel 

       cudaEventRecord(kernel_end, stream = 0) records the event  

       cudaEventSynchronize(kernel_end) synchronizes all devices first      

       cudaEventElapsedTime(&delta, kernel_start, kernel_end);  

• kernel_start and kernel_end are of type cudaEvent_t 

• there can be more than one stream 

• if called from host must wrap in CUDA_CALL() 

 

• these all use CUDA event management routines 

 



Global Memory: Transfer 

How to write to it? 

• transfer directly from GPU to GPU (peer to peer, CUDA 4.x SDK) 

• explicitly with a blocking transfer 

• explicitly with a non-blocking transfer 

• implicitly using zero memory copy 

• all use the PCI-E bus (8 GB/s) 

Transfer can also occur with streams 

• overlap transfers and kernels to ensure the GPU is always kept busy 

  



Bandwidth Considerations 

GPU compute power on the order of T flops 

• main memory bandwidth is 190 GB/s or even less: 25 GB/s 

Recall difference between latency and bandwidth 

• a ratio of 10:1 of threads to number of memory accesses can hide 
memory latency 

• but still need to do access global memory in a coalesced fashion 

What is coalescing? 

• all threads access a contiguous and aligned memory block 

• occurs on a warp-bases (half-warp on G80 hardware) 

• accessing floats will get 32 x 4 = 128 bytes 

 

 



Coalescing 

Supported sizes are 32, 64, 128 bytes 

• bytes, 16 and 32 bit data are supported 

• must be aligned with 32-byte boundary 

Alignment is important 

• example: 2D array 100 x 60 floats 

• cudaMalloc() would allocate 100 x 60 x 4 = 24,000 bytes 

• length of a single row would be 240 bytes  not aligned in 32 bytes 

• thus an access of element [1][0] would not be coalesced and incur 
severe delays 

How to align? 

• use special memory allocation function cudaMallocPitch() 

• pads the memory for alignment (here, by 4 floats for 256 bytes) 



Example 

Assume you have a structure 

 

 

 

 

 

• then data would be stored as follows 



Access Pattern 

Completely un-coalesced 

• addresses are not contiguous in memory 

• will lead to severe access delays 



Two Alternatives 

Interleaved vs. non-interleaved 



CPU Code: Interleaved 



CPU Code: Non-Interleaved 



GPU Code: Interleaved 



GPU Code: Non-Interleaved 



Timing Results 

Observations: 

• non-interleaved has much better performance 

• older GPUs more pronounced since coalescing reqs. more stringent 

• conversely, on CPU interleaved scheme much better because it 
favors sequential access   



Score Boarding 

Helps with latency hiding 

Mechanism 

• you request a memory item by a statement a=arr[0] 

• a memory fetch is initiated 

• a local variable a is listed as having a pending memory transaction 

• unlike in CPUs, no stall occurs  no warp is being switched 

• only when a is actually needed a warp might get switched  

How to use it: 

• place memory fetches at the start of the kernel 

• hide latencies by in-thread computing 

• always try to follow memory fetches by unrelated computing 

• this works anywhere in a kernel 



Is GPU Radix Sort Coalesced? 

Assume global memory storage initially 

Sorting? 

• yes – each thread marches through its own list 

Merging? 

• no – the 1-list varies in size 

But in each merge 

• a single value is written out to global memory 

• a single value is read to shared memory (to replace the written value) 

• so enough computation to hide the latency 



Radix Sort Results 



For 64 Threads 

But still slow since only use one block 

• sort 40 MB per minute 

• but a 1GB dataset would take 25 minutes which is too slow 



Sample Sort 

Need a better sorting algorithm 

• one that does not need expensive merging 

• one that emphasizes parallelism at every step along the way 

• Sample Sort is such an algorithm 

Well suited for parallel implementation 

• belongs to the family of randomized algorithms 



Sample Sort: Illustration (1) 

Using three processors 

• size of bins is 9, 9, 6 



Sample Sort: Strategy 

Randomly pick a set of S sample points 

• assumes the unsorted list has no major concentration of values 

• else must use more samples 

Sort the samples in ascending order 

From the S samples choose P-1 pivot points  P bins  

• number of bins is given by the number of processors 

Scan the dataset to see how many samples fit in each bin 

Shuffle the dataset and assign the data to the bins 

• all data in bin p is less than those in bin p+1 but greater than those in 
bin p-1 

Sort each list separately in parallel  

Append the lists   

 



Sample Sort: Illustration (2) 

Using six processors 

• now size of bins is 6, 3, 5, 4, 1, 5 

• largest bin determines speed of the parallel sorting phase 

• recall 3-processor case  doubling the processors only reduced bin 
size by 1/3  speedup ~ 1.5 



Further Thoughts 

Actual parallelism will depend on dataset 

• best are datasets that are already somewhat sorted  

• for example, the case where some new data elements are to be 
added 

 

Also, we do not just have P processors 

• we have M SMs 

• each needs to run B blocks for latency hiding and so on 

• each block would have ideally 256 threads 

• if have 8 blocks for each of 14 SMs  112 blocks in total 

• but exact number is matter of optimization  

 

Next: 

• shall examine each GPU-accelerated component one by one 



Selecting Samples: CPU Code 



Selecting Samples: GPU Kernel Code 

Now perform the sampling in parallel 

• each thread picks a sample spaced apart by sample_interval 



Selecting Samples: GPU Host Code 



Sorting the Samples 

On the CPU: 

• could just use the qsort() routine from the standard C library 

 

 

 

 

 

 

 

 

 

On the GPU: 

• use RadixSort – either ours of the implementation in the Thrust library 

• note that our implementation was for a single SM in shared memory  

• it also used shared memory reduction for merge 

• more on this later    

 

 



Counting The Sample Bins: CPU 

For search have two options: 

• binary search 

• sequential search 



Search Strategy 

First note: 

• we try to find a data value in a list of S sorted samples 

• so in most cases the search will not be successful 

Sequential search 

• complexity O(S)  

• since the list is sorted we will likely have S/2 

Binary search 

• worst case is O(log(S)) 

• we will hit it because most of the time we will not find a sample 

Numerical example 

• S = 1024 

• binary would take 10 iterations  

• sequential would take 512 iterations 

• binary is better  

• given N data points total time is N10  



Performance Issues for Binary Search 

Execution 

• branch divergence is frequent 

• in the worst case need to multiply by the number of iterations  

• but sample size not high enough to make this really a factor 

Memory access 

• not coalesced because of branch divergence 

• L1/L2 cache may help here 

• could also store all samples in shared memory 

 



Binning: Host Code 

Every thread bins one data element 



Binning: GPU Kernel 

Every thread runs this 



Binning: Binary Search Function 

Can be run on a CPU or GPU implementation (note function qualifier)  



Discussion 

How about parallelism? 

• determined by size of data array 

• not the number of samples as was the case for the previous sampling 
and sorting  

How about memory access? 

• data reads are done in coalesced manner 

• using more threads per block will increase read bandwidth 

How about thread divergence? 

• threads may diverge in the binary search 

• but since we assume the data to be almost sorted threads will likely 
follow the same route  

• the prevents divergence in practice 

How about atomic writes? 

• given that the data are mostly sorted 

• will probably hit the same bin for all threads  will serialize the writes 

 

 



Prefix Sum: CPU Code 

Needed to generate a variable-size table for indexing the 
arrays 

• size of each bin is variable length 



Prefix Sum: Parallelism 

Problematic since it is inherently serial 

• can’t compute an element before knowing the previous one 

• turns out for small N serial prefix sum is quite fast 

• need parallel solution when N is large 

 

Parallel solution 

• split the array into a number of blocks 

• calculate the prefix sum on those blocks 

• place the end point of each prefix sum block into another array  

• compute another prefix sum, in place, on this array 

• add the result of this prefix sum to each element in the original prefix 
sum calculation 



Parallel Prefix Sum: Illustration 



Considerations  

Memory access  

• uses a single thread per block 

• there is no thread divergence 

• however the read memory access is poorly coalesced  

• thread 0 will be accessing addresses starting at a zero offset 

• thread 1 will be accessing addresses starting at a 
(NUM_SAMPLES/NUM_BLOCKS) offset 

Need multiple synchronization points 

• could just use three kernels 

• this will enable us to reconfigure block sizes and number of blocks 

• could also run small prefix sums on the CPU (when N < 4096) 

 

 



Parallel Prefix Sum: First Stage  



Parallel Prefix Sum: Second and Third Stage 



Host Function (1) 



Host Function (2) 



Host Function (3) 



Sorting Into Bins 



Parallel Version 



Final operations 

Sort the individuals bins 

• can use parallel radix sort 

Append the lists 

See book for details 

 



Performance Breakdown 

For GTX 460  



Performance 

Performance ratio GPU/CPU improves for larger sizes 

• note that sample sort is about 55% of the qsort CPU time 

• so perform sample sorting on CPU and other operations on the GPU 

• this changes the performance as follows: 

 

 

 

 

 

 

 

 

 

 

 

• but for larger sample sizes > 128K CPU becomes a bottleneck again 

 

 

 

 

  



Performance Charts 



NVISION 08 Highlights: GPU vs CPU Demonstration 

• http://www.youtube.com/watch?v=mwDPb3T8bOQ  

GPU Technology Conference Keynote 

• http://www.youtube.com/watch?v=A84v7lbdcYg 

http://www.youtube.com/watch?v=mwDPb3T8bOQ
http://www.youtube.com/watch?v=mwDPb3T8bOQ
http://www.youtube.com/watch?v=A84v7lbdcYg

