
CSE 591: GPU Programming

 Memories: Constant and Texture

Klaus Mueller

Computer Science Department

Stony Brook University

Code examples from Shane Cook “CUDA Programming”

Constant Memory: Introduction

What is it?

• a virtual addressing of global memory

• no specially reserved constant memory space

• read-only

How can you use it?

• declare at compile time by __constant__ keyword (fastest)

• write at run time using cudaCopyToSymbol() before kernel invocation

How can it help you?

• it is cached and so enables single-cycle access when data is in cache

• can broadcast a single value to all the threads within a warp

Constant Memory Caching

Compute 1.x devices (pre-Fermi)

• per SM: 64K block with 8K cache size

• break program into 8K chunks to make best use of cache

Avoid irregular data accesses with bad locality

• not a good use of constant memory

• incurs global memory access overhead + cache write/access overhead

Break program into 64K sized tiles or even better, 8K tiles

• makes efficient use of cache

Constant Memory Caching

Compute 2.x devices

• here any constant section of data can be treated as constant memory

• use keyword const and access will go through the constant cache

• but it has to be non-thread  indexing must not include threadIdx.x

For per-thread acess

• need to declare with __constant__ at compile time

• or use cudaCopyToSymbol() before kernel invocation

One thing to keep in mind

• these devices also have L2 cache (much larger than constant cache)

• L2 cache might collect some information automatically

 example: boundary (halo) cells of

 tiles needed for processing other tiles

• might work quicker in some cases

• also saves memory

Constant Memory Broadcast

Also supported in L2 cache

Comes in handy when all threads require the same data item

• for example: rotation matrix in graphics

 convolution mask in image processing

• this item is provided in a single cycle to all the threads in the warp

Be aware of literals

• will be wasteful to keep in constant memory

• rather use #define statement

• for example: #define PI 33.14159265359 (or more digits)

• or d += 676136.89

• speed is the same, but memory storage is different

For the following program

• &, |, and ^ are bitwise AND. OR, and XOR operators

Example Version 1: With Literals

Example Version 2: With Constant Memory

Example Version 3: With Global Memory

Runtime Comparison (1)

Compare literal with constant memory

• only small differences, neck to neck race

Runtime Comparison (2)

Compare literal with global memory

Speedups:

• compute 1.1 hardware (9800GT): 40:1

• compute 1.3 hardware (GTX260): 3:1

• compute 2.0 hardware (GTX470):1.8:1

• compute 2.1 hardware (GTX460):1.6:1

• appears that even L2 devices can benefit from constant memory

Further Examination

It is interesting that constant and literal was equal speed

• shouldn’t constant be slower?

Also, it is interesting that global was slower for all hardware

• shouldn’t devices with L2 cache be better?

Have a look at PTX code

• it is a good habit to look at PTX code when something is unclear

• common practice among experience GPU programmers

PTX Code for Constant Kernel (1)

PTX Code for Constant Kernel (2)

PTX Code for Constant Kernel (3)

Discussion of PTX Code

Compiler smartly converted constants into literals

• so the difference is hidden

Let’s have a look at the global memory version

• now an actual memory read occurs

• supported by L2 cache in new architectures

How can we really test the constant memory caching?

• declare the constant version as an array

Example Version 4: With Constant Memory (Array)

Discussion of PTX Code

Discussion of PTX Code

without L2 cache the winner is

constant memory

with L2 cache the winner is

global memory

Lessons Learned

Always check out PTX code to get insight

Be creative to get the insight you want

• here we changed into an array although we did not need to

• applied the knowledge that arrays never become literals

• it can be a detective problem

Constant Memory Updates At Runtime

Recall

• constant memory is not really constant memory

• there is no dedicated special area of memory set aside

• the 64 K limit is exactly a 16-bit offset

• this allows very quick 16-bit addressing

Constant memory can be updated in chunks/tiles at run time

• of up to 64K at a time

• use cudaCopyToSymbol() API call

• but this can be expensive – do not do this in loops!

Update Example

Create some data on the host and use the API call

• the constant memory case

• the global memory case

For each case, launch the respective CUDA kernel

Update Example: Constant Memory

Update Example: Global Memory

