
CSE 591: GPU Programming

 Memories: Registers and Shared

Klaus Mueller

Computer Science Department

Stony Brook University

Code examples from Shane Cook “CUDA Programming”

Locality

Spatial locality

• if one thread accesses a memory location, another parallel thread will
likely access a neighbor

Temporal locality

• most programs will access that same location again within a short
time period

DRAMS slower than processors

• 1.6 GHz vs. 3 GHz

• local (fast) caches buffers this discrepancy

• cache overcomes both latency and bandwidth problems

Latency vs. Bandwidth

Latency:

• amount of time it takes to respond to a fetch request

• 100s of clock cycles

• request more than one data item at a time – amortize wait time

Bandwidth:

• amount of data you can read/store to DRAM in a given period of time

Bandwidth

Latency

G80 Implementation of CUDA Memories

Each thread can:

• Read/write per-thread registers

• Read/write per-thread local memory

• Read/write per-block shared memory

• Read/write per-grid global memory

• Read/only per-grid constant memory

• Read/only per-grid texture memory

• Latency and bandwidth

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

GPU vs. CPU

A large difference is in context switching

• CPUs take 100s of clock cycles to swap threads

• involves register renaming – registers are saved to the stack

• stack must read back when thread is swapped in

• GPU threads are lightweight

• no register renaming – each thread has its own set of registers

• thread swapping simple moves a pointer

• the limitation is the number of registers available

• this can lead to sudden performance drops if a block cannot be
scheduled anymore

Registers

Registers are very fast

• use it for items often read and written (loop vars, accumulators, ..)

Depending on hardware

• 8 K, 16 K, 32 K or 64 K of space per SM for all threads within an SM

• each thread needs at least one register

Register use example – assume Fermi with 32k

• let’s say we have 256 threads per block

• float (4 bytes)

• (32,768/4 bytes per register)/256 threads = 32 registers per thread
available

More threads will reduce the number of available registers

What then?

• need to move to larger memory transactions

• introduce ILP (Instruction Level Parallelism) – process more than one
element of the dataset within a single thread

Register Variables

All variables that are declared without qualifiers

• are called automatic variables

• they are allocated to registers

If they do not all fit

• then they get allocated to local memory

• local memory is really global memory (slow)

• so better keep track!

Shared Memory

User-controlled L1 cache

• there is also hardware-controlled L1 cache

L1 cache + shared memory = 64 K memory segment per SM

• can be configured in 16k block for either

• no L1 cache in pre-Fermi cards, just shared memory

• has 1.5 TB/s bandwidth with extremely low latency

• hugely superior to the up to 190 GB/s available from global memory

• but around 1/5 of the speed of registers

GPUs have a load/store architecture

• any operand must be loaded into register prior to any operation

Loading the variable into shared memory must be justified by

• intended re-use

• coalescing of global memory

• data sharing among threads

• else it’s more efficient to lead the variable from global memory directly

Shared Memory Organization

Organized into memory banks

• Fermi 32 banks (one warp)

• previously 16 banks (half warp)

Memory bank conflicts

• each bank can only serve one request per cycle

• no need for sequential access

• just need for exclusive access

• fast crossbar switch handles bank-processor communications

• broadcast mechanism in place when all threads access the same
memory location

Bank conflicts cause inefficiencies

• serialize the reads/writes at various degrees

• cannot be hidden and stall the SM

Working Example

Let’s have a look at sorting algorithms

• these typically involve recursion and inconsistent execution flow

• quick-sort great serial but not good for parallel computing

• merge sort better but also not optimal

Very good for parallel execution is radix sort

• fixed number of iterations

• consistent execution flow

Merge Sort

Algorithm

• recursively partition the data

• sort the subsets

• recursively merge the subsets

Merge Sort: Parallel Implementation

After down-ward recursion

• have N/2 threads for 2-element sorting

Example:

• sort list of 128K floats

• need 64K threads

• with 16 SMs and 1536 threads each get 24K threads per pass

• need 2.5 passes to sort all pairs

Merge Sort: Parallel Implementation

Next problem: the merging

• parallelism halves for each merge step up

• one solution would merge all elements with two threads

• but this is not very efficient because we want full warps

 Solution: recursion only down to 32-element sets

• this will also consume less threads in the sorting stage (only 1 pass)

Shared Memory Layout

Merging threads need to cooperate

• shared memory storage is required

• need to assure bank conflict free layout

Radix Sort by Example

Consider this array:

Radix Sort by Example

Requires N + 2N memory cells

Serial Radix Sort Code

GPU Radix Sort

GPU Radix Sort Code

Memory Layout

0 1 2 3 4 5 6 7

0

1 2

3

4 5

6 7

8 9 10 11

9 10

11

sort_tmp

sort_tmp_0

sort_tmp_1

bank 1

thread 1

bank 1

thread 1

bank 1

thread 1

8

Example: 4 threads , 12 numbers

0 1 2 3

4 5 6 7

8 9 10 11

0 3 6 9

7 10

1 2 4 11

5 8

bank 1

GPU Radix Sort Code

Each thread computes num_lists

• ideally num_lists = warp size or a multiple

• will avoid bank conflicts

Optimizing the Code

Optimizing the Code

Can we optimize the code?

• move bit mask operation out of the for-loop

• often done by compiler but not always

• called variational analysis

• also can re-use the ‘1’ list for source array

• eliminates the ‘0’ list and saves memory

• removes a copy operation

CPU-Accelerated Merging of Lists

Needed frequently in parallel programming

Examples:

• in Merge Sort

• for merging num_lists in Radix Sort

Merging Lists: Serial Code

Merging Lists: Concept

Merging Lists

Parallel Merge – Host Program

Parallel Merge – Load Data into Shared Memory

Questions

Remember.

• How is the data laid out in memory?

list 1 list numlist list 1 list numlists list 1 list numlists

Single Thread GPU Merge (1)

Single Thread GPU Merge (2)

Performance

GTX 260 slower than 9800GT, why?

Parallel GPU Merge (1)

Parallel Merge (2)

Parallel Merge (3)

Reduction Approach for Merge

GPU Reduction (1)

GPU Reduction (2)

GPU Reduction (3)

GPU Reduction

Conclusions

AtomicMin code seems to be faster

• but only works for integers

• also only available for compute 1.2 and higher

Reduction is more general

Check out the hybrid atomicMin/reduction code in the book by
Cook

