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Locality 

Spatial locality 

• if one thread accesses a memory location, another parallel thread will 
likely access a neighbor 

Temporal locality 

• most programs will access that same location again within a short 
time period 

DRAMS slower than processors 

• 1.6 GHz vs. 3 GHz 

• local (fast) caches buffers this discrepancy 

• cache overcomes both latency and bandwidth problems 

 

  



Latency vs. Bandwidth 

Latency: 

• amount of time it takes to respond to a fetch request 

• 100s of clock cycles  

• request more than one data item at a time – amortize wait time 

Bandwidth:  

• amount of data you can read/store to DRAM in a given period of time 
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G80 Implementation of  CUDA Memories 

Each thread can: 

• Read/write per-thread registers 

• Read/write per-thread local memory 

• Read/write per-block shared memory 

• Read/write per-grid global memory 

• Read/only per-grid constant memory 

• Read/only per-grid texture memory 

 

 

 

 

• Latency and bandwidth 
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GPU vs. CPU 

A large difference is in context switching 

• CPUs take 100s of clock cycles to swap threads 

• involves register renaming – registers are saved to the stack 

• stack must read back when thread is swapped in 

 

• GPU threads are lightweight  

• no register renaming – each thread has its own set of registers  

• thread swapping simple moves a pointer 

• the limitation is the number of registers available 

• this can lead to sudden performance drops if a block cannot be 
scheduled anymore 

 



Registers 

Registers are very fast 

• use it for items often read and written (loop vars, accumulators, ..) 

Depending on hardware 

• 8 K, 16 K, 32 K or 64 K of space per SM for all threads within an SM 

• each thread needs at least one register  

Register use example – assume Fermi with 32k 

• let’s say we have 256 threads per block 

• float (4 bytes) 

• (32,768/4 bytes per register)/256 threads = 32 registers per thread 
available 

More threads will reduce the number of available registers 

What then? 

• need to move to larger memory transactions 

• introduce ILP (Instruction Level Parallelism) – process more than one 
element of the dataset within a single thread 

 

 

 



Register Variables 

All variables that are declared without qualifiers 

• are called automatic variables 

• they are allocated to registers  

If they do not all fit  

• then they get allocated to local memory 

• local memory is really global memory (slow) 

• so better keep track!  

 

 



Shared Memory 

User-controlled L1 cache  

• there is also hardware-controlled L1 cache 

L1 cache + shared memory = 64 K memory segment per SM 

• can be configured in 16k block for either  

• no L1 cache in pre-Fermi cards, just shared memory  

• has 1.5 TB/s bandwidth with extremely low latency 

• hugely superior to the up to 190 GB/s available from global memory 

• but around 1/5 of the speed of registers 

GPUs have a load/store architecture 

• any operand must be loaded into register prior to any operation 

Loading the variable into shared memory must be justified by  

• intended re-use 

• coalescing of global memory 

• data sharing among threads 

• else it’s more efficient to lead the variable from global memory directly 

 



Shared Memory Organization 

Organized into memory banks 

• Fermi 32 banks (one warp) 

• previously 16 banks (half warp) 

Memory bank conflicts 

• each bank can only serve one request per cycle 

• no need for sequential access 

• just need for exclusive access 

• fast crossbar switch handles bank-processor communications 

• broadcast mechanism in place when all threads access the same 
memory location 

Bank conflicts cause inefficiencies 

• serialize the reads/writes at various degrees 

• cannot be hidden and stall the SM 

 



Working Example 

Let’s have a look at sorting algorithms 

• these typically involve recursion and inconsistent execution flow 

• quick-sort great serial but not good for parallel computing 

• merge sort better but also not optimal 

Very good for parallel execution is radix sort  

• fixed number of iterations  

• consistent execution flow 

 



Merge Sort 

Algorithm 

• recursively partition the data 

• sort the subsets  

• recursively merge the subsets  



Merge Sort: Parallel Implementation 

After down-ward recursion 

• have N/2 threads for 2-element sorting 

Example: 

•  sort list of 128K floats 

•  need 64K threads 

•  with 16 SMs and 1536 threads each get 24K threads per pass 

•  need 2.5 passes to sort all pairs 



Merge Sort: Parallel Implementation 

Next problem: the merging 

•  parallelism halves for each merge step up  

•  one solution would merge all elements with two threads 

 

 

 

 

 

 

 

 

•  but this is not very efficient because we want full warps 

 Solution: recursion only down to 32-element sets 

•  this will also consume less threads in the sorting stage (only 1 pass) 



Shared Memory Layout 

Merging threads need to cooperate 

• shared memory storage is required 

• need to assure bank conflict free layout 



Radix Sort by Example 

Consider this array: 



Radix Sort by Example 

Requires N + 2N memory cells  



Serial Radix Sort Code 



GPU Radix Sort 



GPU Radix Sort Code 



Memory Layout 
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GPU Radix Sort Code 

Each thread computes num_lists 

• ideally num_lists = warp size or a multiple 

• will avoid bank conflicts  



Optimizing the Code 



Optimizing the Code 

Can we optimize the code? 

• move bit mask operation out of the for-loop 

• often done by compiler but not always 

• called variational analysis  

 

• also can re-use the ‘1’ list for source array 

• eliminates the ‘0’ list and saves memory  

• removes a copy operation 

 

 



CPU-Accelerated Merging of Lists  

Needed frequently in parallel programming 

Examples: 

• in Merge Sort 

• for merging num_lists in Radix Sort 



Merging Lists: Serial Code 



Merging Lists: Concept 



Merging Lists 



Parallel Merge – Host Program 



Parallel Merge – Load Data into Shared Memory 



Questions 

Remember.  

• How is the data laid out in memory? 

list 1 list numlist list 1 list numlists list 1 list numlists 



Single Thread GPU Merge (1) 



Single Thread GPU Merge (2) 



Performance 

GTX 260 slower than 9800GT, why? 

  



Parallel GPU Merge (1) 



Parallel Merge (2) 



Parallel Merge (3) 



Reduction Approach for Merge 



GPU Reduction (1) 



GPU Reduction (2) 



GPU Reduction (3) 



GPU Reduction 



Conclusions 

AtomicMin code seems to be faster 

• but only works for integers 

• also only available for compute 1.2 and higher 

Reduction is more general 

Check out the hybrid atomicMin/reduction code in the book by 
Cook 

  


