CSE 591: GPU Programming

Memories

Klaus Mueller

Computer Science Department
Stony Brook University
Importance of Memory Access Efficiency

Every loop iteration has
• two global memory accesses
• two floating point instructions
→ compute-to-global-memory-access ratio (CGMA) = 1

G80 supports 86.4 GB/s memory access bandwidth
• a 4-byte float data access limits bandwidth to 86.4/4=21.6 GB/s
→ get 21.6 GFlops (much lower than the peak 367 Gflops)
G80 Implementation of CUDA Memories

- Each thread can:
 - Read/write per-thread **registers**
 - Read/write per-thread local memory
 - Read/write per-block **shared memory**
 - Read/write per-grid **global memory**
 - Read/only per-grid **constant memory**
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **__device__** is optional when used with __local__, __shared__, or __constant__

- **Automatic variables** without any qualifier reside in a register
 - Except arrays that reside in local memory
Variable Memory Types

```c
global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {
  // Calculate the row index of the Pd element and M
  int Row = blockIdx.y * TILE_WIDTH + threadIdx.y;
  // Calculate the column index of Pd and N
  int Col = blockIdx.x * TILE_WIDTH + threadIdx.x;

  Pvalue = 0;
  // each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k)
    Pvalue += Md[Row][k] * Nd[k][Col];

  Pd[Row][Col] = Pvalue;
}
```

register

shared/global
Where to Declare Variables?

Can host access it?

- **yes**
 - global
 - constant

- **no**
 - register (automatic)
 - shared
 - local

Outside of any Function

In the kernel
Variable Type Restrictions

• **Pointers** can only point to memory allocated or declared in global memory:
 – Allocated in the host and passed to the kernel:
    ```c
    __global__ void KernelFunc(float* ptr)
    ```
 – Obtained as the address of a global variable:
    ```c
    float* ptr = &GlobalVar;
    ```
A Common Programming Strategy

• Global memory resides in device memory (DRAM) - much slower access than shared memory (16kB)

• So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 – Partition data into subsets that fit into shared memory
 – Handle each data subset with one thread block by:
 • Loading the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism
 • Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 • Copying results from shared memory to global memory
A Common Programming Strategy (Cont.)

• Constant memory also resides in device memory (DRAM) - much slower access than shared memory
 – But… cached!
 – Highly efficient access for read-only data

• Carefully divide data according to access patterns
 – R/Only \rightarrow constant memory (very fast if in cache)
 – R/W shared within Block \rightarrow shared memory (very fast)
 – R/W within each thread \rightarrow registers (very fast)
 – R/W inputs/results \rightarrow global memory (very slow)

For texture memory usage, see NVIDIA document.
GPU Atomic Integer Operations

- Atomic operations on integers in global memory:
 - Associative operations on signed/unsigned ints
 - add, sub, min, max, ...
 - and, or, xor
 - Increment, decrement
 - Exchange, compare and swap
- Requires hardware with compute capability 1.1 and above.
Matrix Multiplication using Shared Memory
Review: Matrix Multiplication Kernel using Multiple Blocks

```
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column index of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

    Pd[Row*Width+Col] = Pvalue;
}
```
Matrix Multiplication Using Multiple Blocks

- Break-up P_d into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equal tile size
How about performance on G80?

- All threads access global memory for their input matrix elements
 - Two memory accesses (8 bytes) per floating point multiply-add
 - 4B/s of memory bandwidth/FLOPS
 - $4 \times 346.5 = 1386$ GB/s required to achieve peak FLOP rating
 - 86.4 GB/s limits the code at 21.6 GFLOPS

- The actual code runs at about 15 GFLOPS
- Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS
Idea: Use Shared Memory to reuse global memory data

- Each input element is read by Width threads.
- Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
 - Tiled algorithms
Tiled Multiply

- Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd
A Small Example
Every Md and Nd Element is used exactly twice in generating a 2X2 tile of \(P \)

<table>
<thead>
<tr>
<th></th>
<th>(P_{0,0}) thread(_{0,0})</th>
<th>(P_{1,0}) thread(_{1,0})</th>
<th>(P_{0,1}) thread(_{0,1})</th>
<th>(P_{1,1}) thread(_{1,1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{0,0} \times N_{0,0})</td>
<td>(M_{0,0} \times N_{1,0})</td>
<td>(M_{0,1} \times N_{0,0})</td>
<td>(M_{0,1} \times N_{1,0})</td>
<td></td>
</tr>
<tr>
<td>(M_{1,0} \times N_{0,1})</td>
<td>(M_{1,0} \times N_{1,1})</td>
<td>(M_{1,1} \times N_{0,1})</td>
<td>(M_{1,1} \times N_{1,1})</td>
<td></td>
</tr>
<tr>
<td>(M_{2,0} \times N_{0,2})</td>
<td>(M_{2,0} \times N_{1,2})</td>
<td>(M_{2,1} \times N_{0,2})</td>
<td>(M_{2,1} \times N_{1,2})</td>
<td></td>
</tr>
<tr>
<td>(M_{3,0} \times N_{0,3})</td>
<td>(M_{3,0} \times N_{1,3})</td>
<td>(M_{3,1} \times N_{0,3})</td>
<td>(M_{3,1} \times N_{1,3})</td>
<td></td>
</tr>
</tbody>
</table>
Breaking Md and Nd into Tiles
Each phase of a Thread Block uses one tile from Md and one from Nd

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{0,0}$</td>
<td>$Md_{0,0}$ \downarrow $Mds_{0,0}$ \downarrow $Nds_{0,0}$</td>
<td>$Md_{2,0}$ \downarrow $Mds_{0,0}$ \downarrow $Nds_{0,0}$</td>
</tr>
<tr>
<td></td>
<td>$PValue_{0,0} += Mds_{0,0} \ast Nds_{0,0} + Mds_{1,0} \ast Nds_{0,1}$</td>
<td>$PValue_{0,0} += Mds_{0,0} \ast Nds_{0,0} + Mds_{1,0} \ast Nds_{0,1}$</td>
</tr>
<tr>
<td>$T_{1,0}$</td>
<td>$Md_{1,0}$ \downarrow $Mds_{1,0}$ \downarrow $Nds_{1,0}$</td>
<td>$Md_{3,0}$ \downarrow $Mds_{1,0}$ \downarrow $Nds_{1,0}$</td>
</tr>
<tr>
<td></td>
<td>$PValue_{1,0} += Mds_{0,0} \ast Nds_{1,0} + Mds_{1,0} \ast Nds_{1,1}$</td>
<td>$PValue_{1,0} += Mds_{0,0} \ast Nds_{1,0} + Mds_{1,0} \ast Nds_{1,1}$</td>
</tr>
<tr>
<td>$T_{0,1}$</td>
<td>$Md_{0,1}$ \downarrow $Mds_{0,1}$ \downarrow $Nds_{0,1}$</td>
<td>$Md_{2,1}$ \downarrow $Mds_{0,1}$ \downarrow $Nds_{0,1}$</td>
</tr>
<tr>
<td></td>
<td>$PdValue_{0,1} += Mds_{0,1} \ast Nds_{0,0} + Mds_{1,1} \ast Nds_{0,1}$</td>
<td>$PdValue_{0,1} += Mds_{0,1} \ast Nds_{0,0} + Mds_{1,1} \ast Nds_{0,1}$</td>
</tr>
<tr>
<td>$T_{1,1}$</td>
<td>$Md_{1,1}$ \downarrow $Mds_{1,1}$ \downarrow $Nds_{1,1}$</td>
<td>$Md_{3,1}$ \downarrow $Mds_{1,1}$ \downarrow $Nds_{1,1}$</td>
</tr>
<tr>
<td></td>
<td>$PdValue_{1,1} += Mds_{0,1} \ast Nds_{1,0} + Mds_{1,1} \ast Nds_{1,1}$</td>
<td>$PdValue_{1,1} += Mds_{0,1} \ast Nds_{1,0} + Mds_{1,1} \ast Nds_{1,1}$</td>
</tr>
</tbody>
</table>

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign
First-order Size Considerations in G80

• Each thread block should have many threads
 – TILE_WIDTH of 16 gives $16 \times 16 = 256$ threads

• There should be many thread blocks
 – A 1024×1024 Pd gives $64 \times 64 = 4096$ Thread Blocks

• Each thread block perform $2 \times 256 = 512$ float loads from global memory for $256 \times (2 \times 16) = 8,192$ mul/add operations.
 – Memory bandwidth no longer a limiting factor
Locality

• This scheme enforces *locality*
 – focus of computation on a subset of data elements
 – allows one to use small but high-speed memory for fast computation
 – this exploit matches fast processors with high memory bandwidth and so maximizes the performance
 – locality useful in any multi-core configurations
CUDA Code – Kernel Execution Configuration

// Setup the execution configuration
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,
 Width / TILE_WIDTH);
Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
11. __syncthreads();
11. for (int k = 0; k < TILE_WIDTH; ++k)
12. Pvalue += Mds[ty][k] * Nds[k][tx];
13. Syncthreads();
14. }
13. Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign
Tiled Multiply

- Each block computes one square sub-matrix $P_{d_{sub}}$ of size TILE_WIDTH
- Each thread computes one element of $P_{d_{sub}}$
View: G80 Registers

• Each SM has 8k (8192) registers (128k total)
 – each SM can have up to 768 threads
 – so each thread can use up to 8k/768 = 10 registers

• Now if each thread used 11 registers..
 – number of executable threads is reduced
 – done at the block level
 – 256 threads/block → 768/256 = 3 blocks
 – reduction by 1 block gives 2 blocks → 512 threads
 – reduces number of warps by 1/3 and so reduces the ability for latency hiding
View: G80 Shared Memory

- G80 has 16kB shared memory per SM
- Each SM can have up to 8 blocks
 - so maximum shared memory per block is 2kB
 - if each block used 5kB could only have 3 blocks assigned to each SM
View: G80 Matrix Multiplication Example

• Each SM in G80 has 16KB shared memory
 – SM size is implementation dependent!
 – For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 – So, can potentially have up to 8 Thread Blocks actively executing
 • This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 – The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per thread block, allowing only up to two thread blocks active at the same time
• Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 – The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!
Tiling Size Effects

(more on this later)
Summary- Typical Structure of a CUDA Program

- Global variables declaration
 - __host__
 - __device__, __global__, __constant__, __texture__

- Function prototypes
 - __global__ void kernelOne(…)
 - float handyFunction(…)

- Main ()
 - allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes)
 - transfer data from host to device – cudaMemcpy(d_GlblVarPtr, h_Gl…)
 - execution configuration setup
 - kernel call – kernelOne<<<execution configuration>>>(args…);
 - transfer results from device to host – cudaMemcpy(h_GlblVarPtr,…)
 - optional: compare against golden (host computed) solution

- Kernel – void kernelOne(type args,…)
 - variables declaration - __local__, __shared__
 - automatic variables transparently assigned to registers or local memory
 - syncthreads()…
 - Other functions
 - float handyFunction(int inVar…);