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Lab Assignment 1 – CSE 591/CSE 392, Spring 2015 

Due: Friday, April 24, 11:59pm 

This lab will get you started with CUDA programming on NVIDIA GPUs. Upon completion of the 

assignment please submit the following to me via dropbox and send me the link 

 the complete software (all that is needed to build the executable: source code, project files, etc) 

 an executable (.exe file) of your work 

 a comprehensive report that illustrates with (1) narrative text, (2) code snippets, (3) program output, 

and (4) run time of all aspects of your work 

All of these components are equally important. Please carefully note the policies posted on the class 

webpage. Please also be aware that this assignment will take a good amount of time to do, so please start 

right away so you can ask questions if you have them. 

Your CUDA program will have the following includes: 
 

// C-headers 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

#include <math.h> 

  

// CUDA-headers 

#include <cutil.h> 

 

// your kernel, replace “???_kernel” by the name you choose  

#include <???_kernel.cu> 

You will likely also have a .h file with your own definitions, such as a structure for the Matrix data type 

and various constants. Finally, if you call a C-function to be run on the host from a .cu function, you need 

to export the C-interface, for example: 

extern "C" 

void C-function(args); 

Since the key goal of GPU programming is time performance, you need to accurately measure run time 

for all parts of this lab assignment. To measure CPU time, you may use the following mechanism (taken 

from http://www.songho.ca/misc/timer/timer.html): 

#include <iostream> 

#include <windows.h>                // for Windows APIs 

using namespace std; 

 

int main() 

{ 

    LARGE_INTEGER frequency;        // ticks per second 

    LARGE_INTEGER t1, t2;           // ticks 

    double elapsedTime; 

 

    // get ticks per second 

    QueryPerformanceFrequency(&frequency); 

 

    // start timer 
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    QueryPerformanceCounter(&t1); 

 

    // do something 

    ... 

 

    // stop timer 

    QueryPerformanceCounter(&t2); 

 

    // compute and print the elapsed time in millisec 

    elapsedTime = (t2.QuadPart - t1.QuadPart) * 1000.0 / 

frequency.QuadPart; 

    cout << elapsedTime << " ms.\n"; 

 

    return 0; 

} 

To measure the elapsed kernel time on a GPU using CPU timers, consider the following (taken from the 

NVIDIA CUDA Best Practices Guide).  

1. Using the CPU timers: Here it is critical to remember that many CUDA API functions are 

asynchronous; that is, they return control back to the calling CPU thread prior to completing their 

work. All kernel launches are asynchronous; so are all memory copy functions with the Async suffix 

on the name. Therefore, to accurately measure the elapsed time for a particular call or sequence of 

CUDA calls, it is necessary to synchronize the CPU thread with the GPU by calling 

cudaThreadSynchronize() immediately before starting and stopping the CPU timer. 

cudaThreadSynchronize() blocks the calling CPU thread until all CUDA calls previously issued by 

the thread are completed.  

2. Using CUDA GPU timers: The CUDA event API provides calls that create and destroy events, record 

events (via timestamp), and convert timestamp differences into a floating-point value in milliseconds. 

The following code illustrates their use: 

cudaEvent_t start, stop; float time;  

cudaEventCreate(&start);  

cudaEventCreate(&stop);  

cudaEventRecord( start, 0 ); kernel<<<grid,threads>>> ( d_odata, 

d_idata, size_x, size_y, NUM_REPS); cudaEventRecord( stop, 0 ); 

cudaEventSynchronize( stop ); cudaEventElapsedTime( &time, start, stop 

);  

cudaEventDestroy( start );  

cudaEventDestroy( stop );  

 

3. Using the CUDA Visual Profiler. It comes with the CUDA toolkit and it is probably the easiest way 

to measure the performance. Proceed as follows: 

(1) Build your executable file, keeping the path and name of ".exe" file in mind.  

(2) Open the NVIDIA (CUDA) Compute Visual Profiler 

(3) Create a Project  

(4) Create a session, fill the path and name of the ".exe" file into the dialog. 

(5) Click "Launch Applications" 

Then the profiler will call the exe file multiple times and generate a spreadsheet about the detailed 

statistics on GPU and CPU time. Various counts can be selected in the session dialog (step 3). It is 

easier because you will need to write any code on timing. It will collect all the performance numbers 

that timing functions calls can do. It is also more powerful than the timing-functions. It will record 

"cache miss" and "un-coaleased read and write" which is not reported by timing function calls. 
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1.  CPU-based matrix multiplication 

Write a program that for now computes the product of two matrices on the CPU. For this, write a function  

MatMultCPU(float* C, const float* A, const float* B, unsigned int 

hA, unsigned int wA, unsigned int wB)  

that reads two floating point matrices A,B of dimensions (hA,wA) and (hB=wA,wB) and computes 

C=A*B on the CPU. Assume square matrices where hA=wA. The result will serve later as your gold 

standard to verify the GPU code. So it will be helpful later to precede your GPU code by this code and 

verify the result C. To make sure it works for all matrices, randomize values in a matrix initialization 

routine. For this, use the C-function rand()/(float)RAND_MAX for this and initialize it with srand(seed). 

Make sure you try hA and wA for small and large values. Allocate memory dynamically based on these 

values, do not allocate memory statically.  

2.  GPU-based matrix multiplication with only one thread block 

Now develop two functions with extension .cu. One will be the CPU/host code (it can be the main 

program that calls all other functions, recall the C-interface export comment above) and the other the 

GPU/device code. The host code will allocate and initialize the two matrices, call the gold standard code, 

load the matrices into the GPU, and finally read back the results to the CPU. The device code will 

perform the matrix calculations in parallel. It will adhere to what we discussed in class for the matrix-

multiplication approach that only used one thread block. So your matrix will only have a restricted size 

(what is it?).  

3.  GPU-based matrix multiplication with many thread blocks 

Extend the functions developed above to multiple thread blocks, using the approach discussed in class 

that tiled the destination matrix into thread blocks. Now you can make the matrices much larger. Be sure 

to try large matrices so you can appreciate the differences in CPU and GPU timings. Finally, answer the 

following two questions which will prepare you for the next portion of this assignment:  

1. How many times is each element of the input matrices loaded during the execution of the kernel? 

2. What is the memory-access to floating-point computation ratio in each thread? Consider a multiply 

and addition as separate operations, and ignore the storing of the result. Only global memory loads 

should be counted towards your off-chip bandwidth. 

3. If you use the visual profiler, also report uncoaleased reads/writes, occupancy and cache misses.  

4.  GPU-based matrix multiplication using shared memory  

The former code only used global memory. Now develop the kernel code that makes use of shared 

memory via the approach discussed in class that uses tiles also for the input matrices. Answer the 

questions listed in part 2 for this configuration. Again, report the timings, differences, and answer the 

questions above.  

5. Report results on comparative charts 

Take all the results you obtained and compile a chart/plot that demonstrates the performance measured in 

the programs developed in the 4 sections above. Plots speed over matrix size for each of the 4 variations 

in common plot so they can be easily compared. You can use Excel for this. In addition, create plots for 

speedup = time_CPU / time_GPU for each of the GPU versions (in a single chart for ease of comparison).  


