
CSE 591/392: GPU Programming

 Introduction

Klaus Mueller

Computer Science Department

Stony Brook University

First: A Big Word of Thanks!

… to the millions of computer game
enthusiasts worldwide

Who demand an utmost of performance and realism of their
game engines

And who create a market force for high performance
computing that beats any federal-funded effort (DOE, NASA,
etc.)

High Performance Computing on the Desktop

PC graphics boards featuring GPUs:

• NVIDIA GeForce, ATI Radeon

• available at every computer store for less than
$500

• set up your PC in less than an hour and play

the latest board:
 NVIDIA GeForce GTX 960

“Just” Computing

Compute-only (no graphics): NVIDIA Tesla K 40 (Kepler)

 True GPGPU

(General Purpose

Computing using

GPU Technology)

Bundle 8 cards into a server: 23k processors, 96 GB memory

12 GB memory

per card, 2,880

processors

~$3,500

At SUNY Korea

NVIDIA Kepler K20 Workstation

At SUNY Korea

NVIDIA HP ProLiant Server

Dual rack server with 12 Tesla K 20 cards

Incredible Growth

Performance gap GPU / CPU is growing

• currently 1-2 orders of magnitude is achievable

 (given appropriate programming and problem decomposition)

GPU Vital Specs

GeForce 8800 GTX GeForce GTX 580

Codename G80 GF118

Release date 11/2006 11/2010

Transistors 681 M (90nm) 3,000 M (40nm)

Clock speed 1,350 MHz 1,544 MHz

Processors 128 512

Peak pixel fill rate 13.8 Gigapixels/s 37.6 Gigapixels/s

Pk memory bandwidth 86.4 GB/s (384 bit) 192 GB/s (384 bit)

Memory 768 MB 1536 MB

Peak performance 520 Gigaflops 1,581 Gigaflops

Comparison with CPUs

Intel Xeon Westmere
X5670

GeForce GTX 580

Price $800 $500

Cores / Chip 6 16

ALUs / Core 1 32

Managed threads /
Core 2 1536

Clock speed 3 GHz 1.5 GHz

Performance 96 Gigaflops 1,581 Gigaflops

Comparison with CPUs

Backprojection task

• 496 projections

• size 1248×960 each

$4,500 $500

from Treibig et al. “Pushing the limits for medical

image reconstruction on recent standard

multicore processors,” International Journal of

High Performance Computing Applications

The Graphics Pipeline

Old-style, non-programmable:

textures

stream of

(X,Y,Z,W)

stream of

(R,G,B,A)

The Graphics Pipeline

Modern, programmable:

programmable
textures

stream of

(X,Y,Z,W)

stream of

(R,G,B,A)

The Graphics Pipeline

From a computational view:

programmable
textures

stream of

control

primitives

stream of

4-tuples

data (4-tuples)

4-tuples

Stream Processing

GPUs are stream processors [Kapasi ‘03]

 (with some restrictions) [Venkatasubramanian ‘03]

Stream register file

kernel

Local register file

kernel

Local register file

kernel

Local register file

SIMT SIMT SIMT

stream stream

high bandwidth high bandwidth

input data stream output data stream

lower bandwidth

History: Accelerated Graphics

1990s: accelerated graphics

• Silicon Graphics (SGI)

• expensive and non-programmable

Late 1990s: rise of consumer graphics chips

• Voodoo, ATI Rage, NVIDIA Riva

• chips still separate from memory

End 1990s: consumer graphics boards with high-end graphics

• the world’s first GPU: NVIDIA GeForce 256 (NV 10)

• inexpensive, but still non-programmable

2000s: programmable consumer graphics hardware

• graphics cards: NVIDIA GeForce 3, ATI Radeon 9700

• HW programming languages: CG, GLSL, HLSL

Now: Focus Parallel Computing

2006: parallel computing languages appear

• dedicated SDK and API for parallel high performance computing
(GPGPU)

• CUDA (Compute Unified Device Architecture)

- developed by NVIDIA

• OpenCL (Open Computing Language)

- initially developed by Apple

- now with the Khronos Compute Working Group

• specific GPGPU boards: NVIDIA Tesla, AMD FireStream

Right Now: Focus “Serious” Parallel Computing

2009: next generation CUDA architectures announced

• NVIDIA Fermi, AMD Cypress

• substrate for supercomputing

• focused on “serious” high performance computing (clusters, etc)

Enrico Fermi (1901-1954)

• Italian physicist

• one of the top scientists of the 20th century

• developed the first nuclear reactor

• contributed to

- quantum theory, statistical mechanics

- nuclear and particle physics

• Nobel Prize in Physics in 1938 for his work on induced radioactivity

GPU vs. CPU

One instruction-decode per kernel stream

• CPU needs a decode for each data item

Highly parallel

• GTX 580 has 512 processors

• Memory very close to processors  fast data transfer

• Threads are cheap to switch (light-weight)

  use this to swap out waiting threads, swap in ready threads

• CPU requires lots of cache logic and communication to manage
resources

• GPU has the resources close by

GPU vs. CPU

High % of GPU chip real-estate for computing

• small in CPUs (example, 6.5% in Intel Itanium)

In many cases speedups of 1-2 orders of magnitude can be
obtained by porting to GPU

• more details on the rules for effective porting later

GPU Architecture: Overview

128 processors  8

multi-processors of

16 processors each

local cache L1 (4k)

shared cache L2

(1M)

DRAM (global

memory)
Global Memory

GPU Architecture: Overview

128 processors  8

multi-processors of

16 processors each

local cache L1 (4k)

shared cache L2

(1M)

DRAM (global

memory)
Global Memory

Memory management

is key!

GPU Architecture: Overview

128 processors  8

multi-processors of

16 processors each

local cache L1 (4k)

shared cache L2

(1M)

DRAM (global

memory)
Global Memory

Memory management

is key!

Thread management is

key!

GPU Architecture: Different View

each multiprocessor is a SIMT (Same

Instruction, Multiple Thread) architecture

the (multi-processor level) shared Constant

Cache and Texture Cache are read-only

the (device-level shared) Device Memory

(Global Memory) has read-write access

(with caching soon)

equipped with a set of local 32-bit registers

(L1 and L2 caches)

GPU Specifics

All standard graphics ops are hardwired

• linear interpolations

• matrix and vector arithmetic (+, -, *)

Arithmetic intensity

• the ratio of ALU arithmetic per operand fetched

• needs to be reasonably high, else application is memory-bound

GPU memory 1-2 orders of magnitude slower than GPU
processors

• computation often better than table look-ups

• indirections can be expensive

Be aware of GPU 2D-caching protocol (for texture memory)

• data is fetched in 2D tiles (recall graphics bilinear texture filtering)

• promote data locality in 2D tiles

Latency Hiding

GPUs provide hardware multi-threading

• kicks in when threads within a core ALU stall (waiting for memory,
etc)

• then another (light-weight) SIMT thread group is swapped in for
execution

• this hides the latency for the stalled threads

• GTX 480 allows 48x more threads to be maintained than currently
SIMT- executed

Hardware multi-threading requires memory

• contexts of all these threads must be maintained in memory

• this typically limits the amount of threads that can be simultaneously
maintained for latency hiding

Programmability

GPU hardware can be programmed with

• shading languages (NVIDIA CG, OpenGL GLSL, Microsoft HLSL)

• parallel programming language (CUDA, OpenCL)

Shading languages

• require computer graphics knowledge

• give access to all fixed function pipelines (fast, ASIC-accelerated)

- texturing: data interpolation, filtering

- rasterization: mapping into the data domain

- culling: clipping, early thread removal (early fragment kill)

• this can provide performance benefits

Parallel programming languages

• ease programming, eliminate need to study (some) graphics

Parallel Programming Languages

CUDA (C-interface: C for CUDA, also Fortran), OpenCL

Expose details on GPU memory and thread management

• memory hierarchy, latencies, operation costs, etc

• shading languages don’t make this explicit

• give programmers better control over memory, threads, and
arithmetic intensity (via occupancy calculator, profiler)

Promote computations as SIMT threads, executed in kernels

• Singe Instruction Multiple Threads

• synonymous to fragments in shading languages

But still require (for optimal performance):

• careful computation flow planning, memory management, and
analysis before coding

• no magic here; no pain, no gain

GPGPU

GPGPU = General Purpose Computation on Graphics
hardware (GPU)

• massive trend to use GPUs for main stream computing

• see http://www.gpgpu.org

Accelerate

• volume rendering and advanced graphics effects

• computer vision

• scientific computing and simulations

• audio and image & video processing

• database operations, numerical algorithms and sorting

• data compression

• medical imaging

• and many others

http://www.gpgpu.org/

GPGPU Example Applications

Organization

Will have 4-5 lab projects

• practice what you have learned in class

Either use your own PC or lab machines

• ideally use the lab server

Final project

• there will be a larger final project

• choose from a number of topics or choose your own

• ideally develop some multi-GPU application

