CSE 591/392: GPU Programming

Introduction

Klaus Mueller

Computer Science Department

Stony Brook University

First: A Big Word of Thanks!

... to the millions of computer game
enthusiasts worldwide

Who demand an utmost of performance and realism of their
game engines

And who create a market force for high performance
computing that beats any federal-funded effort (DOE, NASA,
etc.)

High Performance Computing on the Desktop

PC graphics boards featuring GPUs:

* NVIDIA GeForce, ATl Radeon

* available at every computer store for less
$500

* set up your PC in less than an hour and play

<€
|l 7ZVIDIA.

G-FORCE"
F C

the latest board:
NVIDIA GeForce GTX 960

“Just” Computing

Compute-only (no graphics): NVIDIA Tesla K 40 (Kepler)

True GPGPU
(General Purpose
Computing using
GPU Technology)

12 GB memory
per card, 2,880
processors
~$3,500

Bundle 8 cards into a server: 23k processors, 96 GB memory

At SUNY Korea

NVIDIA Kepler K20 Workstation

mIWO 7047-GPU Workstation SYSTEM

Key Features

— Intel® Xeon® processor E5-2600 Dual Socket{(LGA 2011)
QPI up to 8GT/s (up to 150W TDP)
- Intel C602 Chipset
- Up to 512GB DDR3 1600MHz ECC Registered DIMM 16x DIMM sockets
— 2x Intel 1350 Port Gigabit Ethernet LAN ports
1x RJ45 Dedicated |IPMI LAN port
— 6x SATA (3 Gbps) Ports vialCH10R Controller
— Expansion Slots
4 PCI-E 3.0 x16(4x NVIDIA Tesla GPU cards),
2 PCI-E 3.0 x8 (1 in x16),
1 PCI-E 2.0 x4 (in x8)
— Integrated Matrox G200eW Graphios
— 1620W Redundant Power Supplies 80 PLUS, Platinum Level (94%)
— Form Faoctor : 178mm x 452 x 29.4" (HxWxD)

At SUNY Korea

NVIDIA HP ProLiant Server

Dual rack server with 12 Tesla K 20 cards

Incredible Growth

1200 GPU Performance Trends
GTX285 g
1000
GTX 280 /
800
ow
a 8800 Ultra
5 600
o 800057 m// ~#-NVIDIA GPU

/ ~&-Intel CPU
400 ,

7900 GTX
200 7800 GTX
6800 Ultra - Intel Xeon Quad-core 3 GHz
—

5950 Ultra
5800
/sﬁ,—a—"—"-w/ H/k/’/‘
0 e—o- L —

9/22/02 2/4/04 6/18/05 10/31/06 3/14/08

Performance gap GPU / CPU is growing

* currently 1-2 orders of magnitude is achievable
(given appropriate programming and problem decomposition)

GPU Vital Specs

GeForce 8800 GTX GeForce 6TX 580
Codename G80 GF118
Release date 11/2006 11/2010
Transistors 681 M (90nm) 3,000 M (40nm)
Clock speed 1,350 MHz 1,544 MHz
Processors 128 H12
Peak pixel fill rate 13.8 Gigapixels/s 37.6 Gigapixels/s
Pk memory bandwidth | 86.4 GB/s (384 bit) 192 GB/s (384 bit)
Memory 768 MB 1536 MB
Peak performance 520 Gigaflops 1,581 Gigaflops

Comparison with CPUs

Intel Xeon Westmere | - GeForce 6TX 580
Price $800 $500
Cores / Chip 6 16
ALUs / Core 1 32
ManagegO:Zreads / 5 1536
Clock speed 3 GHz 1.5 GHz
Performance 96 Gigaflops 1581 Gigaflops

Comparison with CPUs

Backprojection task

* 496 projections
* Size 1248x%x960 each

Performance |[GUP/s]|

from Treibig et al. “Pushing the limits for medical
image reconstruction on recent standard
multicore processors,” International Journal of
High Performance Computing Applications

The Graphics Pipeline

Old-style, non-programmable:

stream of

(X,Y,Z,W)

U e
o Dolygon primitives
. : jO/.-' el eoe
\ o / transformed fra }?Iients e
\ / into ag oo
\ | / screen space °
l p | _”ee
e —e | rasterization i
| |
Y% ¢
| |
vertex __ .
: _ o shading
transformation bl i .
s, texture mapping
[J—"
transformed

vertices

screen display

(framebutfer) stream Of

mpes (R,G,B,A)
OO H

(Y X
[X N]
e o
[X N]
°
— " eeo

shaded and
textured fragments

textures

The Graphics Pipeline

Modern, programmable:

screen display

stream of (framebuifer) gtragm of
xX,Y,zw) EEes: (R,G,B,A)

® - o ® polygon primitives :ji-‘

sixel 828 38!

|
"\\ | v ~
\ ¢ / transformed <
T fragments ¢¢ ¢

\ / into
\ | / screen space °
| | ; asterization | - ¢
°—-e rasterization e Eaiz
| X N]
Bz [
vertex o . ee o
- _ o shading o
transformation hat i - &
s, texture mapping oo
®_ _
P . shaded and
/ transtglmed T textured fragments
/ vertices

/

fragment shader
(pixel engine)

A

(vertex engine) >

A

»

textures

The Graphics Pipeline

From a computational view:

screen display

stream Of (framebuffer)
&——-o [T
control Y mp
imiti o imitives 4-tuples B ¢4+
Fo polygon primitives _jJ-L
primitives ~ *"e%2 o s
\ o / transformed ; poE. il
\ / into ragments o
\ | / screen space %
l e— —e |rasterization # s P stream Of
I [ee o
vertex | | / ‘ - oo s 4_tup|es
g shading
transformation [~ & ? ‘a Mg | — o6
i texture mapping eoe
 J—
) shaded and
/ transformed T YoTiived TEiBAISHES data (4-tuples)
/ vertices

i

»

erex onams | Prosrammable |2 (T TTT]
ertex e » P _ (pixel e
(vertex engine) | < P gine textures

Stream Processing

GPUs are stream processors [Kapasi ‘03]
(with some restrictions) [Venkatasubramanian ‘03]

Stream register file

lower bandwidth

Input data stream output data stream

stream kernel

SIMT

kernel
SIMT

high bandwidth | high bandwidth

kernel stream

SIMT

Local register file Local register file Local register file

History: Accelerated Graphics

1990s: accelerated graphics
e Silicon Graphics (SGI)
* expensive and non-programmable

Late 1990s: rise of consumer graphics chips

* Voodoo, ATl Rage, NVIDIA Riva
* chips still separate from memory

End 1990s: consumer graphics boards with high-end graphics

* the world’s first GPU: NVIDIA GeForce 256 (NV 10)
* inexpensive, but still non-programmable

2000s: programmable consumer graphics hardware

e graphics cards: NVIDIA GeForce 3, ATI Radeon 9700
* HW programming languages: CG, GLSL, HLSL

Now: Focus Parallel Computing

2006: parallel computing languages appear
* dedicated SDK and API for parallel high performance computing
(GPGPU)
* CUDA (Compute Unified Device Architecture)
- developed by NVIDIA
* OpenCL (Open Computing Language)
- Initially developed by Apple
- now with the Khronos Compute Working Group
* specific GPGPU boards: NVIDIA Tesla, AMD FireStream

<X

NVIDIA.

Right Now: Focus “Serious” Parallel Computing

2009: next generation CUDA architectures announced

* NVIDIA Fermi, AMD Cypress
* substrate for supercomputing
* focused on “serious” high performance computing (clusters, etc)

Enrico Fermi (1901-1954)
* |talian physicist
* one of the top scientists of the 20th century
* developed the first nuclear reactor
* contributed to
- quantum theory, statistical mechanics
- nuclear and particle physics
* Nobel Prize in Physics in 1938 for his work on induced radioactivity

GPU vs. CPU

One instruction-decode per kernel stream
* CPU needs a decode for each data item

Highly parallel

* GTX 580 has 512 processors
* Memory very close to processors - fast data transfer
* Threads are cheap to switch (light-weight)
—> use this to swap out waiting threads, swap in ready threads

* CPU requires lots of cache logic and communication to manage
resources

* GPU has the resources close by

GPU vs. CPU

High % of GPU chip real-estate for computing
* small in CPUs (example, 6.5% in Intel Itanium)

ALU ALU

Control

ALU ALU

CPU GPU

In many cases speedups of 1-2 orders of magnitude can be
obtained by porting to GPU

* more details on the rules for effective porting later

GPU Architecture: Overview

<3

GeForce 8800 GTX Block Diagram nVIDIA
[Host |
[Setup /Ratr/ ZCul

’ ’ J 4

|ERRENER (L (L CEEE
Co e e]

el Cla] [Ca)[Ch [ch (ChE D) (S (Ee) e

OO0 0EO0I00MOCOOMOOIODROCHOO OO OO O

[nE mlE (@@ S8 BE 6§ §EeE L8 eE B e
=) (uiaj/uls) (mis) (sl (S @) & @@ @) b6

Thread Processor

e

| “—]

s QN 8§ o QB 5§ 2 QN B |
Global Memory

128 processors - 8
multi-processors of
16 processors each

local cache L1 (4k)

shared cache L2
(IM)

DRAM (global
memory)

GPU Architecture: Overview

>
GeForce 8800 GTX Block Diagram nVIDIA

’ L

Input Assembler m
' L L

Vix Thread Issue Geom Thread Issue
N S |

’ ’ J 4

|ERRENER (L (L CEEE
Co e e]

el Cla] [Ca)[Ch [ch (ChE D) (S (Ee) e

OO0 0EO0I00MOCOOMOOIODROCHOO OO OO O

[nE mlE (@@ S8 BE 6§ §EeE L8 eE B e
=) (uiaj/uls) (mis) (sl (S @) & @@ @) b6

Thread Processor

e

| “—]

s QN 8§ o QB 5§ 2 QN B |
Global Memory

Memory management
Is key!

128 processors - 8
multi-processors of
16 processors each

local cache L1 (4k)

shared cache L2
(1M)

DRAM (global
memory)

GPU Architecture: Overview

X

DA

GeForce 8800 GTX Block Diagram nviDiA. I ”lza”flgeme”t
is key!

L Host , . . Thread management is
[Setup /Retr / ZCull | key!

-

»
<

oE EEEh ChEE EHER
nofioojoofiooioofioolo
an mu(nE @)E 8 @EE
OOROCI00MOOI0CRO0]C0)

128 processors - 8
multi-processors of
16 processors each

v ’

= [T EE
DOfCOI0CMO0
as (as sE §
cofioojooioo)

| O 1 e)
OO0 00
1 O0I00O800

LLLL) LLLL] LT LLLEILLLL] |
TN ETEE T T ST ST (T local cache L1 (4k)

i: T T

4

Thread Processor

|

| Y——-]

] o Qs o Qo] o Qo] o Jwww] o Qwmw] o] shared cache L2
= B = | = B = § r F e (1M)
DRAM (global

Global Memory memory)

GPU Architecture: Different View

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

each multiprocessor is a SIMT (Same
Instruction, Multiple Thread) architecture

equipped with a set of local 32-bit registers
(L1 and L2 caches)

the (multi-processor level) shared Constant
Cache and Texture Cache are read-only

the (device-level shared) Device Memory
(Global Memory) has read-write access
(with caching soon)

GPU Specifics

All standard graphics ops are hardwired

* linear interpolations
* matrix and vector arithmetic (+, -, *)

Arithmetic intensity
* the ratio of ALU arithmetic per operand fetched
* needs to be reasonably high, else application is memory-bound

GPU memory 1-2 orders of magnitude slower than GPU
Processors

* computation often better than table look-ups
* indirections can be expensive
Be aware of GPU 2D-caching protocol (for texture memory)

* data is fetched in 2D tiles (recall graphics bilinear texture filtering)
* promote data locality in 2D tiles

Latency Hiding

GPUs provide hardware multi-threading
* kicks in when threads within a core ALU stall (waiting for memory,
etc)

* then another (light-weight) SIMT thread group is swapped in for
execution

* this hides the latency for the stalled threads

* GTX 480 allows 48x more threads to be maintained than currently
SIMT- executed

Hardware multi-threading requires memory

e contexts of all these threads must be maintained in memory

* this typically limits the amount of threads that can be simultaneously
maintained for latency hiding

Programmability

GPU hardware can be programmed with

* shading languages (NVIDIA CG, OpenGL GLSL, Microsoft HLSL)
* parallel programming language (CUDA, OpenCL)

Shading languages

* require computer graphics knowledge

* give access to all fixed function pipelines (fast, ASIC-accelerated)
- texturing: data interpolation, filtering
- rasterization: mapping into the data domain
- culling: clipping, early thread removal (early fragment kill)

* this can provide performance benefits

Parallel programming languages
* ease programming, eliminate need to study (some) graphics

Parallel Programming Languages

CUDA (C-interface: C for CUDA, also Fortran), OpenCL

Expose details on GPU memory and thread management

* memory hierarchy, latencies, operation costs, etc
* shading languages don’t make this explicit

* give programmers better control over memory, threads, and
arithmetic intensity (via occupancy calculator, profiler)

Promote computations as SIMT threads, executed in kernels

* Singe Instruction Multiple Threads
* synonymous to fragments in shading languages

But still require (for optimal performance):

* careful computation flow planning, memory management, and
analysis before coding

* NO magic here; no pain, no gain

GPGPU

GPGPU = General Purpose Computation on Graphics
hardware (GPU)

* massive trend to use GPUs for main stream computing
* see

Accelerate

* volume rendering and advanced graphics effects

* computer vision

* scientific computing and simulations

* audio and image & video processing

* database operations, numerical algorithms and sorting
* data compression

* medical imaging

* and many others

http://www.gpgpu.org/

GPGPU Example Applications

Will have 4-5 lab projects
* practice what you have learned in class

Either use your own PC or lab machines
* ideally use the lab server

Final project
* there will be a larger final project

* choose from a number of topics or choose your own
* ideally develop some multi-GPU application

