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History: X-Rays 

Wilhelm Conrad Röntgen 

• 8 November 1895: discovers X-rays. 

• 22 November 1895: X-rays Mrs. Röntgen’s hand. 

• 1901: receives first Nobel Prize in physics 

An early X-ray imaging system: 

 

 

 

 

 

Note: so far all we can see is a projection across the patient: 



History: Computed Tomography 

The breakthrough: 

• acquiring many projections around the 
object enables the reconstruction of the 3D 
object (or a cross-sectional 2D slice) 

CT reconstruction pioneers: 

• 1917: Johann Radon establishes the 
mathematical framework for tomography, 
now called the Radon transform. 

• 1963: Allan Cormack publishes 
mathematical analysis of tomographic 
image reconstruction, unaware of Radon’s 
work. 

• 1972: Godfrey Hounsfield develops first CT 
system, unaware of either Radon or 
Cormack’s work, develops his own 
reconstruction method. 

• 1979 Hounsfield and Cormack receive the 
Nobel Prize in Physiology or Medicine. 

Radon Cormack Hounsfield 



Computed Tomography: Concept 



Computed Tomography: Past and Present 

Image from the Siemens Siretom CT scanner, ca. 1975  

• 128x128 matrix. 

 

 

 

 

Modern CT image acquired with a Siemens scanner  

• 512x512 matrix 

 



Slice Viewer 



To understand the blurring we need more theory  the Fourier 
Slice Theorem or Central Slice Theorem 

• it states that the Fourier transform P(,k) of                                                                
a projection p(r,) is a line across the origin of                                                      
the Fourier transform F(kx,ky) of function f(x,y) 

 

 

 

A possible reconstruction procedure would then: 

• calculate the 1D FT of all projections p(rm,m), which gives rise to 
F(kx,ky) sampled on a polar grid (see figure) 

• resample the polar grid into a cartesian grid (using interpolation) 

• perform inverse 2D FT to obtain the desired f(x,y) on a cartesian grid   

However, there are two important observations: 

• interpolation in the frequency domain leads to artifacts   

• at the FT periphery the spectrum is only sparsely sampled   

The Fourier Slice Theorem 

polar grid 



Filtered Backprojection: Concept  

To account for the implications of these two observations, we 
modify the reconstruction procedure as follows: 

• filter the projections to compensate for the blurring 

• perform the interpolation in the spatial domain via backprojection 

 hence the name Filtered Backprojection 

Filtering -- what follows is a more practical explanation (for 
formal proof see the book): 

• we need a way to equalize the contributions of all frequencies in the 
FT’s polar grid 

• this can be done by multiplying each P(,k) by                                        
a ramp function  this way the magnitudes of                                              
the existing higher-frequency samples in each                                           
projection are scaled up to compensate for                                            
their lower amount 

• the ramp is the appropriate scaling function                                        
since the sample density decreases linearly                                          
towards the FT’s periphery   

ramp 



Filtered Backprojection: Equation and Result 

 

 

 

 

 

 

 

Recall the previous (blurred)                                                   
backprojection illustration 

• now using the filtered projections: 
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Backprojection: Practical Considerations 

A few issues remain for practical use of this theory: 

• we only have a finite set of M projections and a discrete array of N 
pixels (xi, yj) 

 

 

 

 

• to reconstruct a pixel (xi, yj) there may                                                     
not be a ray p(rn,n) (detector sample) in                                                   
the projection set     

 this requires interpolation (usually                                                      
linear interpolation is used) 

 

 

 

• the reconstructions obtained with the simple backprojection appear 
blurred (see previous slides) 
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Interpolation 

Often we want to estimate the formerly continuous function from the 
discretized function represented by the matrix of sample points 

This is done via interpolation 

Concept: 

 

 

 

 

 

 

• center the interpolation kernel (filter) h at the sample position and 
superimpose it onto the grid 

• multiply the values of the grid samples with the kernel value at the 
superimposed position 

• add all the products  this gives the value of the newly interpolated 
sample 

• in the shown case: 

                        f(0.2) = h(-0.2) f(0) + h(-1.2) f(-1) + h(0.8) f(1) + h(1.8) f(2) 



Interpolation Kernels (1) 



Interpolation Kernels (2) 

 

 

 

 

 

 

An additional popular filter is the Gaussian function 

Discussion: 

• nearest neighbor is fastest to compute (just one add), gives sharp edges, but 
sometimes jagged lines 

• linear interpolation takes 2 mults and 1 add and gives a piecewise smooth 
function 

• cubic filter takes 4 mults and 3 adds, but gives an overall smooth interpolated 
function 

• linear interpolation is most popular in many application 



Interpolation in Higher Dimensions 



Interpolation Quality 

Example: 

• resampling of a portion of the star image onto a 

high resolution grid 

• magnification factor ~20 

 



Imaging in Three Dimensions: Spiral CT 

Sequential CT 

• advance table with patient after each                                                                   
slice acquisition has been completed 

• stop-motion is time consuming and                                                               
also shakes the patient 

• the effective thickness of a slice, Dz, is equivalent to the beam width 
Ds in 2D 

• similarly: we must acquire 2 slices per Dz to combat aliasing 

Spiral (helical) CT 

• table translates as tube rotates around                                                   
the patient 

• very popular technique 

• fast and continuous 

• table feed (TF) = axial translation per                                                   
tube rotation 

• pitch = TF / Dz 

Dz 

z 



3D Reconstruction From Cone-Beam Data 

Most direct 3D scanning modality 

• uses a 2D detector 

• requires only one rotation around the patient to obtain all data (within 
the limits of the cone angle) 

• reconstruction formula can be derived in similar ways than the fan 
beam equation (uses various types of weightings as well) 

• a popular equation is that by Feldkamp-Davis-Kress (FDK) 

• backprojection proceeds along cone-beam rays 

Advantages 

• potentially very fast (since only                                                                       
one rotation) 

• often used for 3D angiography 

Downsides 

• sampling problems at the extremities                                                                    

• reconstruction sampling rate                                                                         
varies along z 



Cone-Beam Reconstruction Geometry 

Per voxel, for each angle 

• determine ray from voxel to source 

• intersect with detector plane 

• determine detector pixels 

• interpolate these 

• do depth weighting 

• add contribution to voxel 

 

 



Rabbit CT 

Benchmarking framework: 

• developed By Rohkohl et al. 

• FDK backprojection algorithm 

• 496 projections of a rabbit 

• 1248 X 960 pixels each 

Advantages: 

• enables true comparisons 

• embeds the system matrix already 

• ‘just’ accelerate the backprojection 

• measures timings 

• measures reconstruction errors 

Leaderboard 

• benchmark new code 

• 2563, 5123, 10243 volume reconstructions 

 

 



Rabbit CT Leaderboard (May 14, 2013) 



Rabbit CT Leaderboard (May 14, 2013) 



Rapid Rabbit (June, 2011) 

Approach: 

• voxel parallelism 

• each thread block computes a subset of the volume 

 



Setup 

Approach: 

• each thread computes an array of voxels 

 

Thread Block Dimension: 16 x 16 x 4 

 



Naïve Implementation 

Approach: 

• volume, projection image, and projection matrix stored in global 
memory 

• explicit bi-linear interpolation 

 



Naïve Implementation 



Naïve Results 



ASIC 



ASIC 



ASIC Results 



Fully Optimized 



Fully Optimized 



Fully Optimized Results 



Results 



Results 



Results 



Results 

 

 

 

 

 

 

 

 

 

Click for more paper  

Eric Papenhausen, Ziyi Zheng, and Klaus Mueller. "GPU-accelerated back-projection revisited: squeezing 
performance by careful tuning." Workshop on High Performance Image Reconstruction (HPIR). 2011. 

http://www3.cs.stonybrook.edu/~mueller/papers/performanceTuning_HPIR11.pdf


Optimizations 



New Rabbit on the Block: Thumper (March 2013) 

Improves upon Rapid Rabbit 

Initial code (kernel A) 

 

 

 

 

 

 

 

 

Click for more info and paper 

Timo Zinsser, and Benjamin Keck. "Systematic performance optimization of cone-beam back-projection on 
the Kepler architecture." Proceedings of the 12th Fully Three-Dimensional Image Reconstruction in 
Radiology and Nuclear Medicine (2013): 225-228. 

https://www5.cs.fau.de/research/projects/rabbitct/show_algorithm/?aid=20
http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2013/Zinsser13-SPO.pdf


Analyze Bottlenecks 

Step 1: 

• reduce the voxel size from 0.5 mm to 10-6 mm 

• as a result, all computed detector coordinates are virtually identical 

• the hit rate of the texture cache rises to almost one hundred percent 

Step 2: 

• disable the texture fetching completely 

Step 3: 

• turn off the volume update 

• this removes all memory accesses 

• leaves only the arithmetic and control flow instructions 

Caution 

• do not allow the compiler to eliminate more code than intended 

• these modifications also tend to reduce the register count 

• so allocate a suitable amount of shared memory to retain the 
occupancy of the original kernel 



Analyze Bottlenecks 

In table: 

• I(nstruction), M(emory), T(exture) 

 

 

 

 

 

Test 1: 

• kernel A processes one projection at a time 

• specified tile width Bx = 32 ensures that the volume updates are 
performed by fully coalesced memory transactions 

• we see that the memory transfer takes much longer than the 
computation of the arithmetic instructions (I– vs. IM-) 

• time is almost doubled by the cache misses of the texture fetching 
(IMT vs. Time) 



Analyze Bottlenecks 

In table: 

• I(nstruction), M(emory), T(exture) 

 

 

 

 

 

Test 2: 

• when we process four projections in one kernel, the memory transfer 
size is reduced considerably (IM-) 

• the compute-only kernel also runs much faster, because the number 
of integer-based index computations is minimized as well (I--) 

• however, the time penalty induced by the cache misses of the texture 
fetching remains very high(IMT vs. Time) 



Analyze Bottlenecks 

In table: 

• I(nstruction), M(emory), T(exture) 

 

 

 

 

 

Test 3: 

• we activate the optional synchronization  

• this prevents the divergence of the threads in one thread block with 
respect to the loop over the voxels along the z-axis 

• as a result, the texture fetching is accelerated considerably and the 
computation time is reduced by about 65% (IMT vs. Time) 

• the configuration results in a total of 16 waves of thread blocks, which 
iterate through the volume along the z-axis one after another. 



Analyze Bottlenecks 

In table: 

• I(nstruction), M(emory), T(exture) 

 

 

 

 

 

Test 4: 

• a kernel processes only 8 voxels 

• this relocates the large scale movement along the z-axis from the 
loop inside the kernel to the third dimension of the grid of thread 
blocks 

• this improves the hit rate of the texture cache even more 

• yields the lowest time 



Reordering The Loop 

Observations 

• the cache misses of the texture fetching constitute the major 
performance bottleneck 

• the corresponding textures continuously contend for the limited 
amount of cache memory 

• the memory transfers for the volume update take longer than the 
computations 

• could alleviate the latter by having more projections but this would be 
bad for the former 

Solution 

• reverse the nested loop order 

 

 

 

 

 



Reordering The Loop 



Results 

Kernel B 

 

 

 

 

Test 5:  

• replace kernel A with kernel B, but keep all other parameters 
identical. We clearly observe an improved hit rate of the texture 
cache.  

Following three tests: 

• we increase the number of projections I and tune the other 
parameters to obtain minimal computation times 



Data Transfer Optimizations  

Transfer requirements 

• the 5123 volume results into  2,779 MB of data 

• takes about half a second on the system.  

• use the ability of our GPU to overlap kernel execution and data 
transfer to hide this latency  

• use CUDA asynchronous kernel launches and asynchronous 
memcopy functions 

 

 

 

 

 

 



Data Transfer Optimizations  

Strategy 

• add 8 projections in each transfer until reaching optimum of 32 

• divide volume into two parts (384 and 128 xy slices, resp.) 

• gives rise to two kernel executions 

• this makes it possible to overlap the download of the first part of the 
volume with the reconstruction of the second part of the volume 

 

 



Results 





Rapid Rabbit Strikes Back (June 2013) 

Inherits insight from Thumper plus additional tricks 

Faster perspective divide 

• original code 

     w = a2x + a5 y + a8z + a11 

     u = (a0x + a3y + a6z + a9) / w 

     v = (a1x + a4y + a7z + a10) / w 

 

• using fast inverse square root 

     w = a2x + a5y + a8z + a11 

     w’ = rsqrt(w * w) 

     u = (a0x + a3y + a6z + a9) * w’ 

     v = (a1x + a4y + a7z + a10) * w’ 

     result += tex2D(tRef, (u+0.5), (v+0.5)* w’ * w’                                                                                       

Click for more info and paper  
Eric Papenhausen, Klaus Mueller. "Rapid rabbit: Highly optimized GPU accelerated cone-beam CT 
reconstruction." IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 
2013. 

https://www5.cs.fau.de/research/projects/rabbitct/show_algorithm/?aid=11
http://www3.cs.stonybrook.edu/~mueller/papers/mic_13_RapidRabbit.pdf


Rapid Rabbit Strikes Back 

Observation: 

• noticed a performance dip between the third and eighth kernel 
execution 

• each kernel execution would last approximately 50 milliseconds at the 
beginning 

• then the kernel executions would gradually get slower until it reached 
around 65 milliseconds, and then get faster toward the end.  

• this dip in performance was because the cache locality was worse in 
the middle than at the beginning and end of the execution 

Fix: 

• transpose the volume at 45 

• simply swap x and y indexes 



Rapid Rabbit Strikes Back 

Observation: 

• we thought atomic operations were slow 

• but with the Kepler architecture, atomics are implemented in an ASIC 

• furthermore, atomic operations are executed asynchronously with the 
calling thread 

How to take advantage: 

• accumulate the results into the volume using atomics 

• we know that this will be a fast operation since there are no read/write 
collisions between threads 

• thus the asynchronous nature of atomics guarantees that each thread 
will not have to stall after a write to global memory 

 



Rapid Rabbit Strikes Back 

Observations: 

• in order for us to take advantage of CUDA streams, we have to page-
lock the projection memory 

• page-locked memory, however, is a scarce resource 

• we cannot simply page-lock all the projections at the beginning 

What to do: 

• backproject 64 projections before loading another 64 projections into 
the page-locked memory 

• performing the memory copy in another thread to hide some latency 

• use ping pong scheme 

• one buffer is used for back projection 

• the other is copied to switch the buffers 



Rapid Rabbit: Results 

Implementat

ion 

Thumper Baseline +RSQRT +Transpose +Multi-

Threaded 

+Atomics 

Timing 0.993 s 2.2 s 1.01s 0.967 s 0.951 s 0.921 s 

GUPS  67.7 30.3 65.9 68.8 70.2 72.3 



The Saga Continues… 

 

Come, join the rabbit race 

 

Be the fastest rabbit on the block! 


