
CSE 591: GPU Programming

Case Study: GPU-Accelerated Cone-Beam CT

Klaus Mueller

Computer Science Department

Stony Brook University

History: X-Rays

Wilhelm Conrad Röntgen

• 8 November 1895: discovers X-rays.

• 22 November 1895: X-rays Mrs. Röntgen’s hand.

• 1901: receives first Nobel Prize in physics

An early X-ray imaging system:

Note: so far all we can see is a projection across the patient:

History: Computed Tomography

The breakthrough:

• acquiring many projections around the
object enables the reconstruction of the 3D
object (or a cross-sectional 2D slice)

CT reconstruction pioneers:

• 1917: Johann Radon establishes the
mathematical framework for tomography,
now called the Radon transform.

• 1963: Allan Cormack publishes
mathematical analysis of tomographic
image reconstruction, unaware of Radon’s
work.

• 1972: Godfrey Hounsfield develops first CT
system, unaware of either Radon or
Cormack’s work, develops his own
reconstruction method.

• 1979 Hounsfield and Cormack receive the
Nobel Prize in Physiology or Medicine.

Radon Cormack Hounsfield

Computed Tomography: Concept

Computed Tomography: Past and Present

Image from the Siemens Siretom CT scanner, ca. 1975

• 128x128 matrix.

Modern CT image acquired with a Siemens scanner

• 512x512 matrix

Slice Viewer

To understand the blurring we need more theory  the Fourier
Slice Theorem or Central Slice Theorem

• it states that the Fourier transform P(,k) of
a projection p(r,) is a line across the origin of
the Fourier transform F(kx,ky) of function f(x,y)

A possible reconstruction procedure would then:

• calculate the 1D FT of all projections p(rm,m), which gives rise to
F(kx,ky) sampled on a polar grid (see figure)

• resample the polar grid into a cartesian grid (using interpolation)

• perform inverse 2D FT to obtain the desired f(x,y) on a cartesian grid

However, there are two important observations:

• interpolation in the frequency domain leads to artifacts

• at the FT periphery the spectrum is only sparsely sampled

The Fourier Slice Theorem

polar grid

Filtered Backprojection: Concept

To account for the implications of these two observations, we
modify the reconstruction procedure as follows:

• filter the projections to compensate for the blurring

• perform the interpolation in the spatial domain via backprojection

 hence the name Filtered Backprojection

Filtering -- what follows is a more practical explanation (for
formal proof see the book):

• we need a way to equalize the contributions of all frequencies in the
FT’s polar grid

• this can be done by multiplying each P(,k) by
a ramp function  this way the magnitudes of
the existing higher-frequency samples in each
projection are scaled up to compensate for
their lower amount

• the ramp is the appropriate scaling function
since the sample density decreases linearly
towards the FT’s periphery

ramp

Filtered Backprojection: Equation and Result

Recall the previous (blurred)
backprojection illustration

• now using the filtered projections:

2

0

(,) ((,)) i krf x y P k k e dk d



 




   

ramp-filtering

inverse 1D Fourier transform  p(r,)
backprojection for all angles

not filtered filtered

1D Fourier

 transform of p(r,)

 P(k,)

Backprojection: Practical Considerations

A few issues remain for practical use of this theory:

• we only have a finite set of M projections and a discrete array of N
pixels (xi, yj)

• to reconstruct a pixel (xi, yj) there may
not be a ray p(rn,n) (detector sample) in
the projection set

 this requires interpolation (usually
linear interpolation is used)

• the reconstructions obtained with the simple backprojection appear
blurred (see previous slides)

1

(,) { (,)} (cos sin ,)
M

i j n m i m j m m

m

b x y B p r p x y   


    

interpolation

detector

samples

pixel
ray

Interpolation

Often we want to estimate the formerly continuous function from the
discretized function represented by the matrix of sample points

This is done via interpolation

Concept:

• center the interpolation kernel (filter) h at the sample position and
superimpose it onto the grid

• multiply the values of the grid samples with the kernel value at the
superimposed position

• add all the products  this gives the value of the newly interpolated
sample

• in the shown case:

 f(0.2) = h(-0.2) f(0) + h(-1.2) f(-1) + h(0.8) f(1) + h(1.8) f(2)

Interpolation Kernels (1)

Interpolation Kernels (2)

An additional popular filter is the Gaussian function

Discussion:

• nearest neighbor is fastest to compute (just one add), gives sharp edges, but
sometimes jagged lines

• linear interpolation takes 2 mults and 1 add and gives a piecewise smooth
function

• cubic filter takes 4 mults and 3 adds, but gives an overall smooth interpolated
function

• linear interpolation is most popular in many application

Interpolation in Higher Dimensions

Interpolation Quality

Example:

• resampling of a portion of the star image onto a

high resolution grid

• magnification factor ~20

Imaging in Three Dimensions: Spiral CT

Sequential CT

• advance table with patient after each
slice acquisition has been completed

• stop-motion is time consuming and
also shakes the patient

• the effective thickness of a slice, Dz, is equivalent to the beam width
Ds in 2D

• similarly: we must acquire 2 slices per Dz to combat aliasing

Spiral (helical) CT

• table translates as tube rotates around
the patient

• very popular technique

• fast and continuous

• table feed (TF) = axial translation per
tube rotation

• pitch = TF / Dz

Dz

z

3D Reconstruction From Cone-Beam Data

Most direct 3D scanning modality

• uses a 2D detector

• requires only one rotation around the patient to obtain all data (within
the limits of the cone angle)

• reconstruction formula can be derived in similar ways than the fan
beam equation (uses various types of weightings as well)

• a popular equation is that by Feldkamp-Davis-Kress (FDK)

• backprojection proceeds along cone-beam rays

Advantages

• potentially very fast (since only
one rotation)

• often used for 3D angiography

Downsides

• sampling problems at the extremities

• reconstruction sampling rate
varies along z

Cone-Beam Reconstruction Geometry

Per voxel, for each angle

• determine ray from voxel to source

• intersect with detector plane

• determine detector pixels

• interpolate these

• do depth weighting

• add contribution to voxel

Rabbit CT

Benchmarking framework:

• developed By Rohkohl et al.

• FDK backprojection algorithm

• 496 projections of a rabbit

• 1248 X 960 pixels each

Advantages:

• enables true comparisons

• embeds the system matrix already

• ‘just’ accelerate the backprojection

• measures timings

• measures reconstruction errors

Leaderboard

• benchmark new code

• 2563, 5123, 10243 volume reconstructions

Rabbit CT Leaderboard (May 14, 2013)

Rabbit CT Leaderboard (May 14, 2013)

Rapid Rabbit (June, 2011)

Approach:

• voxel parallelism

• each thread block computes a subset of the volume

Setup

Approach:

• each thread computes an array of voxels

Thread Block Dimension: 16 x 16 x 4

Naïve Implementation

Approach:

• volume, projection image, and projection matrix stored in global
memory

• explicit bi-linear interpolation

Naïve Implementation

Naïve Results

ASIC

ASIC

ASIC Results

Fully Optimized

Fully Optimized

Fully Optimized Results

Results

Results

Results

Results

Click for more paper

Eric Papenhausen, Ziyi Zheng, and Klaus Mueller. "GPU-accelerated back-projection revisited: squeezing
performance by careful tuning." Workshop on High Performance Image Reconstruction (HPIR). 2011.

http://www3.cs.stonybrook.edu/~mueller/papers/performanceTuning_HPIR11.pdf

Optimizations

New Rabbit on the Block: Thumper (March 2013)

Improves upon Rapid Rabbit

Initial code (kernel A)

Click for more info and paper

Timo Zinsser, and Benjamin Keck. "Systematic performance optimization of cone-beam back-projection on
the Kepler architecture." Proceedings of the 12th Fully Three-Dimensional Image Reconstruction in
Radiology and Nuclear Medicine (2013): 225-228.

https://www5.cs.fau.de/research/projects/rabbitct/show_algorithm/?aid=20
http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2013/Zinsser13-SPO.pdf

Analyze Bottlenecks

Step 1:

• reduce the voxel size from 0.5 mm to 10-6 mm

• as a result, all computed detector coordinates are virtually identical

• the hit rate of the texture cache rises to almost one hundred percent

Step 2:

• disable the texture fetching completely

Step 3:

• turn off the volume update

• this removes all memory accesses

• leaves only the arithmetic and control flow instructions

Caution

• do not allow the compiler to eliminate more code than intended

• these modifications also tend to reduce the register count

• so allocate a suitable amount of shared memory to retain the
occupancy of the original kernel

Analyze Bottlenecks

In table:

• I(nstruction), M(emory), T(exture)

Test 1:

• kernel A processes one projection at a time

• specified tile width Bx = 32 ensures that the volume updates are
performed by fully coalesced memory transactions

• we see that the memory transfer takes much longer than the
computation of the arithmetic instructions (I– vs. IM-)

• time is almost doubled by the cache misses of the texture fetching
(IMT vs. Time)

Analyze Bottlenecks

In table:

• I(nstruction), M(emory), T(exture)

Test 2:

• when we process four projections in one kernel, the memory transfer
size is reduced considerably (IM-)

• the compute-only kernel also runs much faster, because the number
of integer-based index computations is minimized as well (I--)

• however, the time penalty induced by the cache misses of the texture
fetching remains very high(IMT vs. Time)

Analyze Bottlenecks

In table:

• I(nstruction), M(emory), T(exture)

Test 3:

• we activate the optional synchronization

• this prevents the divergence of the threads in one thread block with
respect to the loop over the voxels along the z-axis

• as a result, the texture fetching is accelerated considerably and the
computation time is reduced by about 65% (IMT vs. Time)

• the configuration results in a total of 16 waves of thread blocks, which
iterate through the volume along the z-axis one after another.

Analyze Bottlenecks

In table:

• I(nstruction), M(emory), T(exture)

Test 4:

• a kernel processes only 8 voxels

• this relocates the large scale movement along the z-axis from the
loop inside the kernel to the third dimension of the grid of thread
blocks

• this improves the hit rate of the texture cache even more

• yields the lowest time

Reordering The Loop

Observations

• the cache misses of the texture fetching constitute the major
performance bottleneck

• the corresponding textures continuously contend for the limited
amount of cache memory

• the memory transfers for the volume update take longer than the
computations

• could alleviate the latter by having more projections but this would be
bad for the former

Solution

• reverse the nested loop order

Reordering The Loop

Results

Kernel B

Test 5:

• replace kernel A with kernel B, but keep all other parameters
identical. We clearly observe an improved hit rate of the texture
cache.

Following three tests:

• we increase the number of projections I and tune the other
parameters to obtain minimal computation times

Data Transfer Optimizations

Transfer requirements

• the 5123 volume results into 2,779 MB of data

• takes about half a second on the system.

• use the ability of our GPU to overlap kernel execution and data
transfer to hide this latency

• use CUDA asynchronous kernel launches and asynchronous
memcopy functions

Data Transfer Optimizations

Strategy

• add 8 projections in each transfer until reaching optimum of 32

• divide volume into two parts (384 and 128 xy slices, resp.)

• gives rise to two kernel executions

• this makes it possible to overlap the download of the first part of the
volume with the reconstruction of the second part of the volume

Results

Rapid Rabbit Strikes Back (June 2013)

Inherits insight from Thumper plus additional tricks

Faster perspective divide

• original code

 w = a2x + a5 y + a8z + a11

 u = (a0x + a3y + a6z + a9) / w

 v = (a1x + a4y + a7z + a10) / w

• using fast inverse square root

 w = a2x + a5y + a8z + a11

 w’ = rsqrt(w * w)

 u = (a0x + a3y + a6z + a9) * w’

 v = (a1x + a4y + a7z + a10) * w’

 result += tex2D(tRef, (u+0.5), (v+0.5)* w’ * w’

Click for more info and paper
Eric Papenhausen, Klaus Mueller. "Rapid rabbit: Highly optimized GPU accelerated cone-beam CT
reconstruction." IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC),
2013.

https://www5.cs.fau.de/research/projects/rabbitct/show_algorithm/?aid=11
http://www3.cs.stonybrook.edu/~mueller/papers/mic_13_RapidRabbit.pdf

Rapid Rabbit Strikes Back

Observation:

• noticed a performance dip between the third and eighth kernel
execution

• each kernel execution would last approximately 50 milliseconds at the
beginning

• then the kernel executions would gradually get slower until it reached
around 65 milliseconds, and then get faster toward the end.

• this dip in performance was because the cache locality was worse in
the middle than at the beginning and end of the execution

Fix:

• transpose the volume at 45

• simply swap x and y indexes

Rapid Rabbit Strikes Back

Observation:

• we thought atomic operations were slow

• but with the Kepler architecture, atomics are implemented in an ASIC

• furthermore, atomic operations are executed asynchronously with the
calling thread

How to take advantage:

• accumulate the results into the volume using atomics

• we know that this will be a fast operation since there are no read/write
collisions between threads

• thus the asynchronous nature of atomics guarantees that each thread
will not have to stall after a write to global memory

Rapid Rabbit Strikes Back

Observations:

• in order for us to take advantage of CUDA streams, we have to page-
lock the projection memory

• page-locked memory, however, is a scarce resource

• we cannot simply page-lock all the projections at the beginning

What to do:

• backproject 64 projections before loading another 64 projections into
the page-locked memory

• performing the memory copy in another thread to hide some latency

• use ping pong scheme

• one buffer is used for back projection

• the other is copied to switch the buffers

Rapid Rabbit: Results

Implementat

ion

Thumper Baseline +RSQRT +Transpose +Multi-

Threaded

+Atomics

Timing 0.993 s 2.2 s 1.01s 0.967 s 0.951 s 0.921 s

GUPS 67.7 30.3 65.9 68.8 70.2 72.3

The Saga Continues…

Come, join the rabbit race

Be the fastest rabbit on the block!

