
CSE 591/392: GPU Programming

 Basics on Architecture and Programming

Klaus Mueller

Computer Science Department

Stony Brook University

Recommended Literature

text book reference books

more general books on

parallel programming

programming guides

available from

nvidia.com

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Thread management

Memory

Device control

Algorithms

OpenCL

Example applications

Performance tuning

Debugging

CUDA

Host

Kernels

Parallel programming

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Thread management

Memory

Kernels

Device control

Algorithms

OpenCL

Example applications

Performance tuning

Debugging

Host

CUDA

Parallel programming

Speedup Curves

Speedup Curves

but wait, there is more to this…..

Amdahl’s Law

Governs theoretical speedup

P: parallelizable portion of the program

S: speedup

N: number of parallel processors

N

P
P

S

P
P

S

parallel









)1(

1

)1(

1

Amdahl’s Law

Governs theoretical speedup

P: parallelizable portion of the program

S: speedup

N: number of parallel processors

P determines theoretically achievable speedup

• example (assuming infinite N): P=90%  S=10

 P=99%  S=100

N

P
P

S

P
P

S

parallel









)1(

1

)1(

1

Amdahl’s Law

How many processors to use

• when P is small  a small number of processors will do

• when P is large (embarrassingly parallel)  high N is useful

Focus Efforts on Most Beneficial

Optimize program portion with most ‘bang for the buck’

• look at each program component

• don’t be ambitious in the wrong place

Focus Efforts on Most Beneficial

Optimize program portion with most ‘bang for the buck’

• look at each program component

• don’t be ambitious in the wrong place

Example:

• program with 2 independent parts: A, B (execution time shown)

• sometimes one gains more with less

A B

Original program

B sped up 5×

A sped up 2×

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made ‘laws’ subject to change with new architectures

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made ‘laws’ subject to change with new architectures

Memory access patterns

• data access locality and strides vs. memory banks

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made ‘laws’ subject to change with new architectures

Memory access patterns

• data access locality and strides vs. memory banks

Memory access efficiency

• arithmetic intensity vs. cache sizes and hierarchies

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made ‘laws’ subject to change with new architectures

Memory access patterns

• data access locality and strides vs. memory banks

Memory access efficiency

• arithmetic intensity vs. cache sizes and hierarchies

Enabled granularity of program parallelism

• MIMD vs. SIMD

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made ‘laws’ subject to change with new architectures

Memory access patterns

• data access locality and strides vs. memory banks

Memory access efficiency

• arithmetic intensity vs. cache sizes and hierarchies

Enabled granularity of program parallelism

• MIMD vs. SIMD

Hardware support for specific tasks  on-chip ASICS

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made ‘laws’ subject to change with new architectures

Memory access patterns

• data access locality and strides vs. memory banks

Memory access efficiency

• arithmetic intensity vs. cache sizes and hierarchies

Enabled granularity of program parallelism

• MIMD vs. SIMD

Hardware support for specific tasks  on-chip ASICS

Support for hardware access  drivers, APIs

Device Transfer Costs

Transferring the data to the device is also important

• computational benefit of a transfer plays a large role

• transfer costs are (or can be) significant

Transferring the data to the device is also important

• computational benefit of a transfer plays a large role

• transfer costs are (or can be) significant

Adding two (N×N) matrices:

• transfer back and from device: 3 N2 elements

• number of additions: N2

 operations-transfer ratio = 1/3 or O(1)

Device Transfer Costs

Transferring the data to the device is also important

• computational benefit of a transfer plays a large role

• transfer costs are (or can be) significant

Adding two (N×N) matrices:

• transfer back and from device: 3 N2 elements

• number of additions: N2

 operations-transfer ratio = 1/3 or O(1)

Multiplying two (N×N) matrices:

• transfer back and from device: 3 N2 elements

• number of multiplications and additions: N3

 operations-transfer ratio = O(N) grows with N

Device Transfer Costs

Programming Strategy

Use GPU to complement CPU execution

• recognize parallel program segments and only parallelize these

• leave the sequential (serial) portions on the CPU

sequential portions (do not bite)

parallel portions (enjoy)

PPP (Peach of Parallel Programming – Kirk/Hwu)

Types of Parallelism

Task based parallelism

• unrelated processes are executed in parallel

• slowest process determines the speed

• also known as coarse grained parallelism

• MIMD model = Multiple Instructions Multiple Data

Data based parallelism

• decompose a specific task into threads

• each thread executes the same statement at the same time

• also known as fine grained parallelism

• SIMD model = Single Instructions Multiple Data

Patterns of Parallelism

Loops

• for and while statements

Fork and Join

Tiling and grids

• break the domain into sub-problems that map well to the hardware

• 2D tiles/grid for images, 3D tiles/grid for volumes

Divide and Conquer

• recursion: can present problems for parallelism when too deep

• better use an iterative approach that solves a level in parallel

Locality

Temporal locality

• data that was accessed before will be likely accessed again

• use cache to reduce access latencies

Spatial locality

• data close to the data accessed last will likely be accessed soon

• fetch entire cache lines when accessing one element

Dirty cache

• a cache location that was written by a process

• update may conflict with the cache of a different process

• need to write back to a shared level of the cache hierarchy

Cache hierarchies

• each level slower then the one below

• scope (to parallel processes) increases with increasing levels

• so must pick the level with sufficient scope

Architectures

von Neumann architecture of traditional CPUs

• serial instruction decode

Connection machine

• pioneered by Thinking Machines

• 4-connected processors and communication

IBM Cell processor

• PowerPC processors

Multi-Node Computing

Connect several PCs (nodes)

• wiring by fast Ethernet, Inifiniband

• program using OpenMP or MPI (Message Passing Interface)

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Thread management

Memory

Kernels

Device control

Algorithms

OpenCL

Example applications

Performance tuning

Debugging

CUDA

Host

Parallel programming

Overall GPU Architecture (G80)

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Stream

processor SP SM block

Streaming

multi-processor SM

768 MB Off-chip (GDDR) DRAM (on-board)

Memory bandwith: 86.4 GB/s (GPU)

4GB/s BW (GPU  CPU, PCI Express)

GPU Architecture Specifics

Additional hardware

• each SP has a multiply-add (MAD) and one extra multiply unit

• special floating-point function units (SQRT, TRIG, ..)

Massive multi-thread support

• CPUs typically run 2 or 4 threads/core

• G80 can run up to 768 threads/SM  12,000 threads/chip

• GT200 can run 1024 threads/SM  30,000 threads/ship

G80 (2008)

• GeForce 8-series (8800 GTX, etc)

• 128 SP (16 SM  8 SM)

• 500 Gflops (768 MB DRAM)

GT200 (2009)

• GeForce GTX 280, etc

• 240 SP

• 1 Tflops (1 GB DRAM)

NVIDIA Quadro:

professional version of consumer

GeForce series

NVIDIA Fermi Architecture

GeForce 400 series

• GTX 480, etc

• up to 512 SP (16  32) but typically < 500 (GTX 480 has 496 SP)

• 1.3 Tflops (1.5GB DRAM)

Important features:

• C++, support for C, Fortran, Java, Python, OpenCL, DirectCompute

• ECC (Error Correcting Code) memory (Tesla only)

• 512 CUDA Cores™ with new IEEE 754-2008 floating-point standard

• 8× peak double precision arithmetic performance over last-gen GPUs

• NVIDIA Parallel DataCache™ cache hierarchy

• NVIDIA GigaThread™ for concurrent kernel execution

NVIDIA Fermi

SM (Streaming

Multiprocessor)

On chip:

SMs: 16

CUDA cores: 2×16/SM, 512/chip

memory interfaces: 6 (BW 384 bits)

CUDA Core

memory interface (64 bit)

NVIDIA Fermi

two16-wide cores

4 special function units (math, etc)

full cross-bar interface

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Thread management

Memory

Kernels

Device control

Algorithms

OpenCL

Example applications

Performance tuning

Debugging

CUDA

Host

Parallel programming

Mapping the Architecture to Parallel Programs

Parallelism is exposed as threads

• all threads run the same code

• a thread runs on one SP

• SPMD (Single Process, Multiple Data)

The threads divide into blocks

• threads execute together in a block

• each block has a unique ID within a
grid  block ID

• each thread has a unique ID within a
block  thread ID

• block ID and thread ID can be used to
compute a global ID

The blocks aggregate into grid cells

• each such cell is a SM

Mapping the Architecture to Parallel Programs

Thread communication

• threads within a block cooperate via shared memory, atomic
operations, barrier synchronization

• threads in different blocks cannot cooperate

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block 1

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block N - 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Mapping the Architecture to Parallel Programs

Threads within a block are
organized into SPMD warps

• execute the same instruction
simultaneously with different data

A warp is 32 threads

 a 16-core block takes 2 clock cycles
to compute a warp

One SM can maintain 48 warps
simultaneously

• keep one warp active while 47 wait for
memory  latency hiding

• 32 threads  48 warps 16 SMs
 24,576 threads !

Mapping the Architecture to Parallel Programs

Mapping

• depends on device
hardware

Thread management

• very lightweight
thread creation,
scheduling

• in contrast, on the
CPU thread
management is very
heavy

Qualifiers

Function qualifiers

• specify whether a function executes on the host or on the device

•__global__ defines a kernel function (must return void)

•__device__ and __host__ can be used together

 CPU=host and GPU=device

For function executed on the device

• no recursion

• no static variable declarations inside the function

• no variable number of arguments

Function Exe on Call from

__device__ GPU GPU

__global__ GPU CPU

__host__ CPU CPU

Qualifiers

Variable qualifiers

• specify the memory location on the device of a variable

•__shared__ and __constant__ are optionally used together
with __device__

Variable Memory Scope Lifetime

__shared__ Shared Block Block

__device__ Global Grid Application

__constant__ Constant Grid Application

Anatomy of a Kernel Function Call

Define function as device kernel to be called from the host:

__global__ void KernelFunc(...);

Configuring thread layout and memory:

dim3 DimGrid(100,50); // 5000 thread blocks

dim3 DimBlock(4,8,8); // 256 threads per (3D) block

size_t SharedMemBytes = 64; // 64 bytes of shared

memory

Launch the kernel (<<, >> are CUDA runtime directives)

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes

>>>(...);

Program Constructs

Synchronization

• any call to a kernel function is asynchronous from CUDA 1.0 on

• explicit synchronization needed for blocking

Memory allocation on the device

• use cudaMalloc(*mem, size)

• resulting pointer may be manipulated on the host but allocated
memory cannot be accessed from the host

Data transfer from and to the device

• use cudaMemcpy(devicePtr, hostPtr, size, HtoD) for hostdevice

• use cudaMemcpy(hostPtr, devicePtr, size, DtoH) for devicehost

Number of CUDA devices

• use cudaGetDeviceCount(&count);

Program Constructs

Get device properties for cnt devices

for (i=0; i<cnt, i++)

 cudaGetDeviceProperties(&prop,i);

Some useful device properties (see CUDA spec for more)

• totalGlobalMemory

• warpSize

• maxGridSize

• multiProcessorCount

• ….

Example: Vector Add (CPU)

void vectorAdd(float *A, float *B, float *C, int N) {

 for(int i = 0; i < N; i++)

 C[i] = A[i] + B[i]; }

int main() {

 int N = 4096;

 // allocate and initialize memory

 float *A = (float *) malloc(sizeof(float)*N);

 float *B = (float *) malloc(sizeof(float)*N);

 float *C = (float *) malloc(sizeof(float)*N);

 init(A); init(B);

 vectorAdd(A, B, C, N); // run kernel

 free(A); free(B); free(C);} // free memory

from: Dana Schaa and Byunghyun Jang, NEU

Example: Vector Add (GPU)

__global__ void gpuVecAdd(float *A, float *B, float *C) {

 int tid = blockIdx.x * blockDim.x + threadIdx.x

 C[tid] = A[tid] + B[tid]; }

(0,0), (1,0) …. (31,0)

threadIdx.x

blockIdx.x

blockDim.x=32

tid = blockId.x * blockDim.x + threadIdx.x

Example: Vector Add (GPU)

int main() {

 int N = 4096; // allocate and initialize memory on the CPU

 float *A = (float *) malloc(sizeof(float)*N); *B = (float *) malloc(sizeof(float)*N); *C =
(float*)malloc(sizeof(float)*N)

 init(A); init(B);

 // allocate and initialize memory on the GPU

 float *d_A, *d_B, *d_C;

 cudaMalloc(&d_A, sizeof(float)*N); cudaMalloc(&d_B, sizeof(float)*N); cudaMalloc(&d_C,
sizeof(float)*N);

 cudaMemcpy(d_A, A, sizeof(float)*N, HtoD); cudaMemcpy(d_B, B, sizeof(float)*N, HtoD);

 // configure threads

 dim3 dimBlock(32,1);

 dim3 dimGrid(N/32,1);

 // run kernel on GPU

 gpuVecAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C);

 // copy result back to CPU

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);

 // free memory on CPU and GPU

 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);

 free(A); free(B); free(C); }

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Thread management

Memory

Kernels

Device control

Algorithms

OpenCL

Example applications

Performance tuning

Debugging

CUDA

Host

Parallel programming

Large Sums

Add up a large set of numbers

• Normalization factor:

• Mean square error:

• L2 Norm:

nvvvS  21

n

baba
MSE nn

22

11)()(




22

2

2

1 nxxxx  


Large Sums

Common operator:

Code in C++ running on CPU:

nvvvv  321

O(n) additions

:

float sum = 0;

for (int i=0; i<n; i++)

{

 sum += v[i];

}

return sum;

Non-Parallel Approach

Non-parallel approach:

 Input numbers:

O(n) complexity

Generate only

one thread

How to optimize?

Memory

space

Parallel Approach

Two tasks:

• read numbers to memory

• do the computation (addition) and write result

 a b

Reduction approach

Reduction Approach: Kernel 1

Parallel Approach: Kernel 1

O(logn) complexity

Generate 16

threads

Threads in same step

execute in parallel

Reduction Approach: Kernel 1

CUDA code:

very inefficient statement,
% operator is very slow

…….

Kernel optimization

Kernel optimization

Kernel optimization

Kernel optimization

Toward Final Optimized Kernel

Performance for 4M numbers:

Final optimized kernel:

Parallel Reduction

Hardware Requirements

NVIDIA CUDA-able devices:

• desktop machines: GeForce 8-series and up

• mobile: GeForce 8m-series and up

• for more information see http://en.wikipedia.org/wiki/CUDA

May use CUDA emulator for older devices

• slower but better debugging support

