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Speedup Curves 



Speedup Curves 

but wait, there is more to this….. 



Amdahl’s Law 

Governs theoretical speedup 

 

 

 

P: parallelizable portion of the program 

S: speedup 

N: number of parallel processors 
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Amdahl’s Law 

Governs theoretical speedup 

 

 

 

P: parallelizable portion of the program 

S: speedup 

N: number of parallel processors 

 

P determines theoretically achievable speedup 

• example (assuming infinite N): P=90%  S=10 

                        P=99%  S=100 
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Amdahl’s Law 

How many processors to use 

• when P is small  a small number of processors will do 

• when P is large (embarrassingly parallel)  high N is useful   

 

 



Focus Efforts on Most Beneficial 

Optimize program portion with most ‘bang for the buck’ 

• look at each program component  

• don’t be ambitious in the wrong place 

 

   

 



Focus Efforts on Most Beneficial 

Optimize program portion with most ‘bang for the buck’ 

• look at each program component  

• don’t be ambitious in the wrong place 

Example: 

• program with 2 independent parts: A, B (execution time shown) 

 

 

 

 

 

 

 

• sometimes one gains more with less 

   

 

A B 

Original program 

B sped up 5× 

A sped up 2× 



Beyond Theory.... 

Limits from mismatch of parallel program and parallel platform 

•  man-made ‘laws’ subject to change with new architectures 
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Beyond Theory.... 

Limits from mismatch of parallel program and parallel platform 

•  man-made ‘laws’ subject to change with new architectures 

Memory access patterns  

• data access locality and strides vs. memory banks 

Memory access efficiency 

• arithmetic intensity vs. cache sizes and hierarchies   

Enabled granularity of program parallelism   

• MIMD vs. SIMD 

Hardware support  for specific tasks  on-chip ASICS 

Support for hardware access  drivers, APIs 

 



Device Transfer Costs  

Transferring the data to the device is also important 

• computational benefit of a transfer plays a large role 

• transfer costs are (or can be ) significant 
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Adding two (N×N) matrices: 
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Transferring the data to the device is also important 

• computational benefit of a transfer plays a large role 

• transfer costs are (or can be) significant 

Adding two (N×N) matrices: 

• transfer back and from device: 3 N2 elements 

• number of additions: N2 

 operations-transfer ratio = 1/3 or O(1) 

Multiplying two (N×N) matrices: 

• transfer back and from device: 3 N2 elements 

• number of multiplications and additions: N3 

 operations-transfer ratio = O(N) grows with N 

 

  

 

Device Transfer Costs  



Programming Strategy 

Use GPU to complement CPU execution 

• recognize parallel program segments and only parallelize these 

• leave the sequential (serial) portions on the CPU 

sequential portions (do not bite) 

parallel portions (enjoy) 

PPP (Peach of Parallel Programming – Kirk/Hwu) 



Types of Parallelism 

Task based parallelism 

• unrelated processes are executed in parallel 

• slowest process determines the speed 

• also known as coarse grained parallelism 

• MIMD model = Multiple Instructions Multiple Data 

Data based parallelism 

• decompose a specific task into threads 

• each thread executes the same statement at the same time 

• also known as fine grained parallelism 

• SIMD model = Single Instructions Multiple Data 

 



Patterns of Parallelism 

Loops 

• for and while statements 

Fork and Join 

 

 

 

Tiling and grids 

• break the domain into sub-problems that map well to the hardware 

• 2D tiles/grid for images, 3D tiles/grid for volumes 

Divide and Conquer 

• recursion: can present problems for parallelism when too deep 

• better use an iterative approach that solves a level in parallel   

 

 



Locality 

Temporal locality 

• data that was accessed before will be likely accessed again 

• use cache to reduce access latencies 

Spatial locality 

• data close to the data accessed last will likely be accessed soon 

• fetch entire cache lines when accessing one element 

Dirty cache 

• a cache location that was written by a process 

• update may conflict with the cache of a different process 

• need to write back to a shared level of the cache hierarchy 

Cache hierarchies 

• each level slower then the one below 

• scope (to parallel processes) increases with increasing levels 

• so must pick the level with sufficient scope 



Architectures 

von Neumann architecture of traditional CPUs 

• serial instruction decode 

 

 

 

 

Connection machine 

• pioneered by Thinking Machines  

• 4-connected processors and communication 

 

 

IBM Cell processor 

• PowerPC processors 

 



Multi-Node Computing 

Connect several PCs (nodes) 

• wiring by fast Ethernet, Inifiniband 

• program using OpenMP or MPI (Message Passing Interface) 
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Overall GPU Architecture (G80) 

Load/store 

Global Memory 

Thread Execution Manager 

Input Assembler 

Host 

Texture Texture Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Load/store Load/store Load/store Load/store Load/store 

Stream  

processor SP SM block 

Streaming  

multi-processor SM 

768 MB Off-chip (GDDR) DRAM (on-board) 

Memory bandwith: 86.4 GB/s (GPU) 

4GB/s BW (GPU  CPU, PCI Express) 



GPU Architecture Specifics 

Additional hardware 

• each SP has a multiply-add (MAD) and one extra multiply unit 

• special floating-point function units (SQRT, TRIG, ..) 

Massive multi-thread support 

• CPUs typically run 2 or 4 threads/core 

• G80 can run up to 768 threads/SM  12,000 threads/chip 

• GT200 can run 1024 threads/SM  30,000 threads/ship  

G80 (2008) 

• GeForce 8-series (8800 GTX, etc) 

• 128 SP (16 SM  8 SM) 

• 500 Gflops (768 MB DRAM) 

GT200 (2009) 

• GeForce GTX 280, etc 

• 240 SP 

• 1 Tflops (1 GB DRAM) 

 

NVIDIA Quadro: 

professional version of consumer  

GeForce series 



NVIDIA Fermi Architecture 

GeForce 400 series 

• GTX 480, etc 

• up to 512 SP (16  32) but typically < 500 (GTX 480 has 496 SP) 

• 1.3 Tflops (1.5GB DRAM) 

Important features: 

• C++, support for C, Fortran, Java, Python, OpenCL, DirectCompute  

• ECC (Error Correcting Code) memory (Tesla only) 

• 512 CUDA Cores™ with new IEEE 754-2008 floating-point standard 

• 8× peak double precision arithmetic performance over last-gen GPUs 

• NVIDIA Parallel DataCache™ cache hierarchy 

• NVIDIA GigaThread™ for concurrent kernel execution 

 

 

 



NVIDIA Fermi 

SM (Streaming 

Multiprocessor)  

On chip: 

SMs: 16 

CUDA cores: 2×16/SM, 512/chip 

memory interfaces: 6 (BW 384 bits)   

CUDA Core 

memory interface (64 bit) 



NVIDIA Fermi 

two16-wide cores 

4 special function units (math, etc)  

full cross-bar interface 
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Mapping the Architecture to Parallel Programs 

Parallelism is exposed as threads 

• all threads run the same code 

• a thread runs on one SP 

• SPMD (Single Process, Multiple Data) 

The threads divide into blocks 

• threads execute together in a block 

• each block has a unique ID within a 
grid  block ID 

• each thread has a unique ID within a 
block  thread ID 

• block ID and thread ID can be used to 
compute a global ID 

The blocks aggregate into grid cells 

• each such cell is a SM 

 

 

 



Mapping the Architecture to Parallel Programs 

Thread communication 

• threads within a block cooperate via shared memory, atomic 
operations, barrier synchronization 

• threads in different blocks cannot cooperate 

 

… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

threadID 

Thread Block 0 

… 
… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block 1 

… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block N - 1 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 



Mapping the Architecture to Parallel Programs 

Threads within a block are 
organized into SPMD warps 

• execute the same instruction 
simultaneously with different data 

A warp is 32 threads 

 a 16-core block takes 2 clock cycles 
to compute a warp 

One SM can maintain 48 warps 
simultaneously 

• keep one warp active while 47 wait for 
memory  latency hiding 

• 32 threads  48 warps 16 SMs              
 24,576 threads !  



Mapping the Architecture to Parallel Programs 

Mapping 

• depends on device 
hardware 

Thread management 

• very lightweight 
thread creation, 
scheduling 

• in contrast, on the 
CPU thread 
management is very 
heavy 



Qualifiers 

Function qualifiers 

• specify whether a function executes on the host or on the device 

•__global__ defines a kernel function (must return void) 

•__device__ and __host__ can be used together 

 

 

 

 

 

 

                             CPU=host and GPU=device  

For function executed on the device 

• no recursion 

• no static variable declarations inside the function 

• no variable number of arguments 

 

 

 

 

 

 

Function Exe on  Call from 

__device__ GPU GPU 

__global__ GPU CPU 

__host__ CPU CPU 



Qualifiers 

Variable qualifiers 

• specify the memory location on the device of a variable 

•__shared__  and __constant__ are optionally used together 
with  __device__ 

 
Variable Memory Scope Lifetime 

__shared__ Shared Block Block 

__device__ Global Grid Application 

__constant__ Constant Grid Application 



Anatomy of a Kernel Function Call 

Define function as device kernel to be called from the host: 

__global__ void KernelFunc(...); 

 

Configuring thread layout and memory: 

dim3   DimGrid(100,50);  // 5000 thread blocks  

dim3   DimBlock(4,8,8);  // 256 threads per (3D) block  

size_t SharedMemBytes = 64; // 64 bytes of shared 

memory 

 

Launch the kernel (<<, >> are CUDA runtime directives)  

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes 

>>>(...); 



Program Constructs  

Synchronization 

• any call to a kernel function is asynchronous from CUDA 1.0 on 

• explicit synchronization needed for blocking 

Memory allocation on the device 

• use cudaMalloc(*mem, size) 

• resulting pointer may be manipulated on the host but allocated 
memory cannot be accessed from the host 

Data transfer from and to the device 

• use cudaMemcpy(devicePtr, hostPtr, size, HtoD) for hostdevice 

• use cudaMemcpy(hostPtr, devicePtr, size, DtoH) for devicehost 

Number of CUDA devices 

• use cudaGetDeviceCount(&count); 

 

 

 



Program Constructs  

Get device properties for cnt devices 

for (i=0; i<cnt, i++) 

    cudaGetDeviceProperties(&prop,i); 

Some useful device properties (see CUDA spec for more) 

•  totalGlobalMemory 

•  warpSize 

•  maxGridSize 

•  multiProcessorCount 

•  …. 

 



Example: Vector Add (CPU) 

void vectorAdd(float *A, float *B, float *C, int N) { 

 for(int i = 0; i < N; i++) 

        C[i] = A[i] + B[i]; } 

 

 

int main() { 

 int N = 4096;   

  // allocate and initialize memory 

 float *A = (float *) malloc(sizeof(float)*N);     

 float *B = (float *) malloc(sizeof(float)*N);     

 float *C = (float *) malloc(sizeof(float)*N); 

 init(A); init(B); 

 

 vectorAdd(A, B, C, N);  // run kernel 

 free(A); free(B); free(C);} // free memory 

from: Dana Schaa and Byunghyun Jang, NEU 



Example: Vector Add (GPU) 

__global__ void gpuVecAdd(float *A, float *B, float *C) { 

      int tid = blockIdx.x * blockDim.x + threadIdx.x 

      C[tid] = A[tid] + B[tid]; } 

(0,0),  (1,0)    ….  (31,0)       

threadIdx.x 

blockIdx.x 

blockDim.x=32 

tid = blockId.x * blockDim.x + threadIdx.x 



Example: Vector Add (GPU) 

int main() { 

 int N = 4096; // allocate and initialize memory on the CPU 

 float *A = (float *) malloc(sizeof(float)*N); *B = (float *) malloc(sizeof(float)*N); *C = 
(float*)malloc(sizeof(float)*N) 

 init(A); init(B); 

  // allocate and initialize memory on the GPU 

 float *d_A, *d_B, *d_C; 

 cudaMalloc(&d_A, sizeof(float)*N);   cudaMalloc(&d_B, sizeof(float)*N);     cudaMalloc(&d_C, 
sizeof(float)*N); 

 cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);    cudaMemcpy(d_B, B, sizeof(float)*N, HtoD); 

  // configure threads 

 dim3 dimBlock(32,1); 

 dim3 dimGrid(N/32,1); 

  // run kernel on GPU 

 gpuVecAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C); 

  // copy result back to CPU 

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH); 

  // free memory on CPU and GPU 

 cudaFree(d_A);   cudaFree(d_B);    cudaFree(d_C); 

 free(A);   free(B);   free(C); } 
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Large Sums 

Add up a large set of numbers 

• Normalization factor: 

 

 

• Mean square error: 

 

 

• L2 Norm: 
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Large Sums 

Common operator:  

 

 

 

Code in C++ running on CPU: 

 

 

 

 

nvvvv  321

O(n) additions 

:

float sum = 0;  

for (int i=0; i<n; i++) 

{ 

 sum += v[i]; 

} 

return sum; 



Non-Parallel Approach 

Non-parallel approach: 

 Input numbers: 

O(n) complexity 

Generate only 

one thread 

How to optimize? 

Memory 

space 



Parallel Approach  

Two tasks: 

• read numbers to memory 

• do the computation (addition) and write result 

 
 a          b 

Reduction approach 



Reduction Approach: Kernel 1 

Parallel Approach: Kernel 1 

 

O(logn) complexity 

Generate 16 

threads 

Threads in same step 

execute in parallel 



Reduction Approach: Kernel 1 

CUDA code: 

very inefficient statement, 
% operator is very slow 



……. 

Kernel optimization 

Kernel optimization 

Kernel optimization 

Kernel optimization 



Toward Final Optimized Kernel 

Performance for 4M numbers: 

Final optimized kernel: 

Parallel Reduction 



Hardware Requirements  

NVIDIA CUDA-able devices: 

• desktop machines: GeForce 8-series and up 

• mobile: GeForce 8m-series and up 

• for more information see http://en.wikipedia.org/wiki/CUDA 

May use CUDA emulator for older devices 

• slower but better debugging support 

 

 


