CSE 591/392: GPU Programming

Basics on Architecture and Programming

Klaus Mueller

Computer Science Department

Stony Brook University

Recommended Literature

text book

reference books

programming guides available from nvidia.com

more general books on parallel programming

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Host

Performance tuning

Kernels

Debugging

Thread management

OpenCL

Algorithms

Memory

CUDA

Device control

Example applications

Parallel programming

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Host

Performance tuning

Kernels

Debugging

Thread management

OpenCL

Algorithms

Memory

CUDA

Device control

Example applications

Parallel programming

Speedup Curves

Speedup Curves

but wait, there is more to this.....

Amdahl's Law

Governs theoretical speedup

$$S = \frac{1}{(1-P) + \frac{P}{S_{parallel}}} = \frac{1}{(1-P) + \frac{P}{N}}$$

P: parallelizable portion of the program

S: speedup

N: number of parallel processors

Amdahl's Law

Governs theoretical speedup

$$S = \frac{1}{(1-P) + \frac{P}{S_{parallel}}} = \frac{1}{(1-P) + \frac{P}{N}}$$

P: parallelizable portion of the program

S: speedup

N: number of parallel processors

P determines theoretically achievable speedup

Amdahl's Law

How many processors to use

- when P is small → a small number of processors will do
- when P is large (embarrassingly parallel) → high N is useful

Focus Efforts on Most Beneficial

Optimize program portion with most 'bang for the buck'

- look at each program component
- don't be ambitious in the wrong place

Focus Efforts on Most Beneficial

Optimize program portion with most 'bang for the buck'

- look at each program component
- don't be ambitious in the wrong place

Example:

program with 2 independent parts: A, B (execution time shown)

• sometimes one gains more with less

Limits from mismatch of parallel program and parallel platform

man-made 'laws' subject to change with new architectures

Limits from mismatch of parallel program and parallel platform

man-made 'laws' subject to change with new architectures

Memory access patterns

data access locality and strides vs. memory banks

Limits from mismatch of parallel program and parallel platform

man-made 'laws' subject to change with new architectures

Memory access patterns

data access locality and strides vs. memory banks

Memory access efficiency

arithmetic intensity vs. cache sizes and hierarchies

Limits from mismatch of parallel program and parallel platform

man-made 'laws' subject to change with new architectures

Memory access patterns

data access locality and strides vs. memory banks

Memory access efficiency

• arithmetic intensity vs. cache sizes and hierarchies

Enabled granularity of program parallelism

MIMD vs. SIMD

Limits from mismatch of parallel program and parallel platform

man-made 'laws' subject to change with new architectures

Memory access patterns

data access locality and strides vs. memory banks

Memory access efficiency

• arithmetic intensity vs. cache sizes and hierarchies

Enabled granularity of program parallelism

MIMD vs. SIMD

Hardware support for specific tasks → on-chip ASICS

Limits from mismatch of parallel program and parallel platform

man-made 'laws' subject to change with new architectures

Memory access patterns

data access locality and strides vs. memory banks

Memory access efficiency

• arithmetic intensity vs. cache sizes and hierarchies

Enabled granularity of program parallelism

MIMD vs. SIMD

Hardware support for specific tasks → on-chip ASICS

Support for hardware access → drivers, APIs

Device Transfer Costs

Transferring the data to the device is also important

- computational benefit of a transfer plays a large role
- transfer costs are (or can be) significant

Device Transfer Costs

Transferring the data to the device is also important

- computational benefit of a transfer plays a large role
- transfer costs are (or can be) significant

Adding two $(N \times N)$ matrices:

- transfer back and from device: 3 N² elements
- number of additions: N²
- \rightarrow operations-transfer ratio = 1/3 or O(1)

Device Transfer Costs

Transferring the data to the device is also important

- computational benefit of a transfer plays a large role
- transfer costs are (or can be) significant

Adding two $(N \times N)$ matrices:

- transfer back and from device: 3 N² elements
- number of additions: N²
- \rightarrow operations-transfer ratio = 1/3 or O(1)

Multiplying two $(N \times N)$ matrices:

- transfer back and from device: 3 N² elements
- number of multiplications and additions: N³
- \rightarrow operations-transfer ratio = O(N) grows with N

Programming Strategy

Use GPU to complement CPU execution

- recognize parallel program segments and only parallelize these
- leave the sequential (serial) portions on the CPU

PPP (Peach of Parallel Programming – Kirk/Hwu)

Types of Parallelism

Task based parallelism

- unrelated processes are executed in parallel
- slowest process determines the speed
- also known as coarse grained parallelism
- MIMD model = Multiple Instructions Multiple Data

Data based parallelism

- decompose a specific task into threads
- each thread executes the same statement at the same time
- also known as fine grained parallelism
- SIMD model = Single Instructions Multiple Data

Patterns of Parallelism

Loops

for and while statements

Fork and Join

Tiling and grids

- break the domain into sub-problems that map well to the hardware
- 2D tiles/grid for images, 3D tiles/grid for volumes

Divide and Conquer

- recursion: can present problems for parallelism when too deep
- better use an iterative approach that solves a level in parallel

Locality

Temporal locality

- data that was accessed before will be likely accessed again
- use cache to reduce access latencies

Spatial locality

- data close to the data accessed last will likely be accessed soon
- fetch entire cache lines when accessing one element

Dirty cache

- a cache location that was written by a process
- update may conflict with the cache of a different process
- need to write back to a shared level of the cache hierarchy

Cache hierarchies

- each level slower then the one below
- scope (to parallel processes) increases with increasing levels
- so must pick the level with sufficient scope

Architectures

von Neumann architecture of traditional CPUs

serial instruction decode

Connection machine

- pioneered by Thinking Machines
- 4-connected processors and communication

IBM Cell processor

PowerPC processors

Multi-Node Computing

Connect several PCs (nodes)

- wiring by fast Ethernet, Inifiniband
- program using OpenMP or MPI (Message Passing Interface)

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Host Performance tuning

Kernels

Debugging

Thread management

OpenCL

Algorithms

Memory

CUDA

Device control

Example applications

Parallel programming

Overall GPU Architecture (G80)

GPU Architecture Specifics

Additional hardware

- each SP has a multiply-add (MAD) and one extra multiply unit
- special floating-point function units (SQRT, TRIG, ..)

Massive multi-thread support

- CPUs typically run 2 or 4 threads/core
- G80 can run up to 768 threads/SM → 12,000 threads/chip
- GT200 can run 1024 threads/SM → 30,000 threads/ship

G80 (2008)

- GeForce 8-series (8800 GTX, etc)
- 128 SP (16 SM × 8 SM)
- 500 Gflops (768 MB DRAM)

GT200 (2009)

- GeForce GTX 280, etc
- 240 SP
- 1 Tflops (1 GB DRAM)

NVIDIA Quadro: professional version of consumer GeForce series

NVIDIA Fermi Architecture

GeForce 400 series

- GTX 480, etc
- up to 512 SP (16 × 32) but typically < 500 (GTX 480 has 496 SP)
- 1.3 Tflops (1.5GB DRAM)

Important features:

- C++, support for C, Fortran, Java, Python, OpenCL, DirectCompute
- ECC (Error Correcting Code) memory (Tesla only)
- 512 CUDA Cores™ with new IEEE 754-2008 floating-point standard
- 8x peak double precision arithmetic performance over last-gen GPUs
- NVIDIA Parallel DataCache[™] cache hierarchy
- NVIDIA GigaThread[™] for concurrent kernel execution

NVIDIA Fermi

NVIDIA Fermi

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Host Performance tuning

Kernels

Debugging

Thread management

OpenCL

Algorithms

Memory

CUDA

Device control

Example applications

Parallel programming

Mapping the Architecture to Parallel Programs

Parallelism is exposed as *threads*

- all threads run the same code
- a thread runs on one SP
- SPMD (Single Process, Multiple Data)

The threads divide into blocks

- threads execute together in a block
- each block has a unique ID within a grid → block ID
- each thread has a unique ID within a block → thread ID
- block ID and thread ID can be used to compute a global ID

The blocks aggregate into grid cells

each such cell is a SM

Mapping the Architecture to Parallel Programs

Thread communication

- threads within a block cooperate via shared memory, atomic operations, barrier synchronization
- threads in different blocks cannot cooperate

Mapping the Architecture to Parallel Programs

Threads within a block are organized into SPMD warps

 execute the same instruction simultaneously with different data

A warp is 32 threads

→ a 16-core block takes 2 clock cycles to compute a warp

One SM can maintain 48 warps simultaneously

- keep one warp active while 47 wait for memory → latency hiding
- 32 threads × 48 warps ×16 SMs
 → 24,576 threads!

Mapping the Architecture to Parallel Programs

Mapping

 depends on device hardware

Thread management

- very lightweight thread creation, scheduling
- in contrast, on the CPU thread management is very heavy

Qualifiers

Function qualifiers

- specify whether a function executes on the host or on the device
- global defines a kernel function (must return void)
- __device__ and __host__ can be used together

Function	Exe on	Call from	
device	GPU	GPU	
global	GPU	CPU	
host	CPU	CPU	

CPU=host and GPU=device

For function executed on the device

- no recursion
- no static variable declarations inside the function
- no variable number of arguments

Qualifiers

Variable qualifiers

specify the memory location on the device of a variable

__shared__ and __constant__ are optionally used together with __device__

Variable	Memory	Scope	Lifetime	
shared	Shared	Block	Block	
device	Global	Grid	Application	
constant	Constant	Grid	Application	

Anatomy of a Kernel Function Call

Define function as device kernel to be called from the host:

```
__global__ void KernelFunc(...);
```

Configuring thread layout and memory:

```
dim3 DimGrid(100,50); // 5000 thread blocks
dim3 DimBlock(4,8,8); // 256 threads per (3D) block
size_t SharedMemBytes = 64; // 64 bytes of shared
memory
```

Launch the kernel (<<, >> are CUDA runtime directives)

```
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes
>>>(...);
```

Program Constructs

Synchronization

- any call to a kernel function is asynchronous from CUDA 1.0 on
- explicit synchronization needed for blocking

Memory allocation on the device

- use cudaMalloc(*mem, size)
- resulting pointer may be manipulated on the host but allocated memory cannot be accessed from the host

Data transfer from and to the device

- use cudaMemcpy(devicePtr, hostPtr, size, HtoD) for host→device
- use cudaMemcpy(hostPtr, devicePtr, size, DtoH) for device→host

Number of CUDA devices

use cudaGetDeviceCount(&count);

Program Constructs

Get device properties for cnt devices

```
for (i=0; i<cnt, i++)
    cudaGetDeviceProperties(&prop,i);</pre>
```

Some useful device properties (see CUDA spec for more)

- totalGlobalMemory
- warpSize
- maxGridSize
- multiProcessorCount
-

Example: Vector Add (CPU)

```
void vectorAdd(float *A, float *B, float *C, int N) {
  for(int i = 0; i < N; i++)
       C[i] = A[i] + B[i];
int main() {
  int N = 4096;
           // allocate and initialize memory
  float *A = (float *) malloc(sizeof(float)*N);
  float *B = (float *) malloc(sizeof(float)*N);
  float *C = (float *) malloc(sizeof(float)*N);
  init(A); init(B);
  vectorAdd(A, B, C, N); // run kernel
  free(A); free(B); free(C);}
                                // free memory
```

Example: Vector Add (GPU)

blockDim.x=32

Example: Vector Add (GPU)

```
int main() {
  int N = 4096;
                 // allocate and initialize memory on the CPU
  float *A = (float *) malloc(sizeof(float)*N); *B = (float *) malloc(sizeof(float)*N); *C =
  (float*)malloc(sizeof(float)*N)
  init(A); init(B);
          // allocate and initialize memory on the GPU
  float *d A, *d B, *d C;
  cudaMalloc(&d_A, sizeof(float)*N); cudaMalloc(&d_B, sizeof(float)*N);
                                                                           cudaMalloc(&d C.
  sizeof(float)*N);
  cudaMemcpy(d A, A, sizeof(float)*N, HtoD); cudaMemcpy(d B, B, sizeof(float)*N, HtoD);
          // configure threads
  dim3 dimBlock(32,1);
  dim3 dimGrid(N/32,1);
          // run kernel on GPU
  gpuVecAdd <<< dimBlock,dimGrid >>> (d A, d B, d C);
          // copy result back to CPU
  cudaMemcpy(C, d C, sizeof(float)*N, DtoH);
          // free memory on CPU and GPU
  cudaFree(d A); cudaFree(d B); cudaFree(d C);
  free(A); free(B); free(C); }
```

Course Topic Tag Cloud

Architecture

Limits of parallel programming

Host

Performance tuning

Kernels

Debugging

Thread management

OpenCL

Algorithms

Memory

CUDA

Device control

Example applications

Parallel programming

Large Sums

Add up a large set of numbers

Normalization factor:

$$S = v_1 + v_2 + \dots + v_n$$

Mean square error:

$$MSE = \frac{(a_1 - b_1)^2 + \dots + (a_n - b_n)^2}{n}$$

L2 Norm:

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Large Sums

Common operator:

Code in C++ running on CPU:

O(n) additions

```
float sum = 0;

for (int i=0; i<n; i++)

{

sum += v[i];
}

return sum;
```

Non-Parallel Approach

Non-parallel approach:

Input numbers:

Generate only one thread

Memory space

O(n) complexity

How to optimize?

Parallel Approach

Two tasks:

- read numbers to memory
- do the computation (addition) and write result

a + b

Reduction Approach: Kernel 1

Parallel Approach: Kernel 1

Threads in same step execute in parallel

O(logn) complexity

Reduction Approach: Kernel 1

CUDA code:

```
global void reduce0(int *g_idata, int *g_odata) {
extern shared int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];
syncthreads();
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
  if (tid % (2*s) == 0) {
                                          very inefficient statement,
    sdata[tid] += sdata[tid + s];
                                             % operator is very slow
    syncthreads();
// write result for this block to global mem
if (tid == 0) g odata[blockldx.x] = sdata[0];
```

......

Kernel optimization

Kernel optimization

Kernel optimization

Kernel optimization

Toward Final Optimized Kernel

Performance for 4M numbers:

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x

Final optimized kernel:

Kernel 7: 0.268 ms 62.671 GB/s 1.42x 30.04x

Parallel Reduction

Hardware Requirements

NVIDIA CUDA-able devices:

- desktop machines: GeForce 8-series and up
- mobile: GeForce 8m-series and up
- for more information see http://en.wikipedia.org/wiki/CUDA

May use CUDA emulator for older devices

slower but better debugging support