A Jump Start to OpenCL

Another Language to Program Parallel Computing Devices

March 15, 2009

CIS 565/665 - GPU Computing
and Architecture

sources

OpenCL Tutorial - Introduction to OpenCL
OpenCL for NVIDIA GPUs — Chris Lamb

OpenCL - Parallel Computing for
Heterogeneous Devices (SIGGASIA) —
Kronos Group

NVIDIA OpenCL Jump Start Guide
OpenCL - Making Use of What You've Got

OpenCL Basics and Advanced (PPAM
2009) - Domink Behr

sources

OpenCL Tutorial - Introduction to OpenCL
OpenCL for NVIDIA GPUs - Chris Lamb

OpenCL - Parallel Computing for
Heterogeneous Devices (SIGGASIA) -
Kronos Group

NVIDIA OpenCL Jump Start Guide
OpenCL - Making Use of What You’'ve Got

OpenCL Basics and Advanced (PPAM
2009) - Domink Behr

The Khronos APl Ecosystem

Desktop 3D

Ecosystem
CC_LLADA

3D Asset Interchange

Parallel computing and
visualization in scientific and
consumer applications

Streamlined APls for mobile and
embedded graphics, media and
compute acceleration

Q MAX " Embedded 30
Streaming Media aml‘ OpenVG

Image Processing

o e Vector 2D
£ JpenSLES.
Hundreds of man years R et A
invested by industry experts
to create coordinated
ecosystem

OpenKCSGS

Integrated Mixed-media Stack

Umbrella specifications define OpenKO DE
coherent acceleration stacks for Mobile 05 Abstractio
mobile application portability

OpenCL Working Group

* Diverse industry participation
- Processor vendors, system OEMs, middleware vendors, application developers

+ Many industry-leading experts involved in OpenCL’s design
- A healthy diversity of industry perspectives

« Apple initially proposed and is very active in the working group
- Serving as specification editor

* Here are some of the other companies in the OpenCL working group

LABS savso B AMDZl ARM sl ©

(intel’

m \ @ ;ijﬁ NOKIA @ s

%w&eﬁky“ ERICSSON = P

E"
S
!

||vml|
(el
|l|

WIDIA MK SOFTWARE SYSTENS

iV

TAKkuml— ¥ Texas Y

BB T Y INSTRUMENTS 3

OpenCL Timeline

+ Six months from proposal to released specification
- Due to a strong initial proposal and a shared commercial incentive to work quickly

* Apple’s Mac OS X Snow Leopard will include OpenCL

- Improving speed and responsiveness for a wide spectrum of applications

* Multiple OpenCL implementations expected in the next 12 months
- On diverse platforms

OpenCL
Apple works working grou Khronos
with AMD, Intel, develops dra publicly releases
NVIDIA and into cross- OpenCL as
others on draft vendor royalty-free
proposal specification specification
| Jun08 } Oct08 | May09
t t Dec08 t
Apple proposes Working Group Khronos to
OpenCL working sends release
group and completed draft conformance
contributes draft to Khronos tests to ensure
specification to Board for high-quality

Khronos Ratification implementations

CUDA Working Group

DWW UIRDUAL.

Design Goals of OpenCL

eUse all computational resources in system
* GPUs and CPUs as peers

- Data- and task- parallel compute model

eEfficient parallel programming model
- Based on C

= Abstract the specifics of underlying hardware

eSpecify accuracy of floating-point computations
* |[EEE 754 compliant rounding behavior

* Define maximum allowable error of math functions

eDrive future hardware requirements

Anatomy of OpenCL

e Language Specification
C-based cross-platform programming interface

Subset of ISO C99 with language extensions - familiar
to developers

Well-defined numerical accuracy (IEEE 754 rounding
with specified max error)

Online or offline compilation and build of compute
kernel executables

Includes a rich set of built-in functions

e Platform Layer API

A hardware abstraction layer over diverse
computational resources

Query, select and initialize compute devices
Create compute contexts and work-queues

e Runtime API
Execute compute kernels
Manage scheduling, compute, and memory resources

OpenCL Platform Model (section 3.9)

Processing Host
Element = IFT
.r"f =
Compute Unit Compute Device

* One Host + one or more Compute Devices
- Each Compute Device is composed of one or more Compute Units
- Each Compute Unit is further divided into one or more Processing Elements

OpenCL Memory Model on NVIDIA

Software Hardware

0 -
Scalar

__private Processor

QR

__local and _
constant Multiprocessor

__global

« Each hardware thread has a dedicated
___private region for stack

« Each multiprocessor has dedicated storage
for __local memory and __constant caches

* Work-items running on a multiprocessor
can communicate through __local memory

« All work-groups on the device can
access __global memory

» Atomic operations allow powerful forms
of global communication

OpenCL Synchronization on NVIDIA

Software

2

mem_fence()
atom_*()

R

barrier()
work_group_copy()

EnqueueNDRange
cl_event

Hardware

|
Scalar

Processor

Multiprocessor

» Independent atomic operations and
memory system control

» Write collective operations in a
familiar C-style

» Single instruction fast barrier support
directly in HW

» Collective operations leverage the entire
multi-processor

* Direct HW support for scheduling
NDRange grids

 Direct HW support for scheduling
enqueued commands using cl_events

Execution Model cubpa

Software

Thread

Q

Thread
Block

Hardware

N
Thread
Processor

Multiprocessor

EH

Device

£

Threads are executed by thread processors

Thread blocks are executed on multiprocessors
Thread blocks do not migrate

Several concurrent thread blocks can reside on
one multiprocessor - limited by multiprocessor
resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one
time

Software Hardware Software Hardware

|
[
2 Scalar Thread

v Processor
__private Processor

Q& Q

__local and _ Thread
__constant Multiprocessor Block

__global

OpenCL Memory Model section 3.3

Shared memory model Private Private Private Privale

- Relaxed consistency METDW Mewrog it il

Work [tem 1 Work tem M Work ltem 1 Work ltem M
IE 11 PE | | JE 1] PE

Multiple distinct address spaces

- Address spaces can be collapsed depending
on the device's memory subsystem

Compute Unit 1 Compute Unit N

Local Memory

SO AR | oo o Dt |
Private - private to a work-item :

- Local - local to a work-group Compute Dewice

- Global - accessible by all work-items in all I

work-groups

Compute Device Memory

Implementations map this hierarchy
- To available physical memories

Memory Model Comparison

Private Private Private Private
Memory Memory Memory Memory

1 1 1 1
‘ th'hltem‘lH WurkltemM\ ‘Wnrkltem1n kaltemluﬂ\

Compute Unit 1 Compute Unit N

Global / Constant Memory Data Cache

Compute Device

Global Memory

Compute Device Memor
" il Compute Device Memory Geeks3D.com

CUDA vs OpenCL

CUDA term OpenCL term
GPU Device

Multiprocessor Compute Unit
Scalar core Processing element

Global memory Global memory
Shared (per-block) memory Local memory
Local memory (automatic, or __local__) | Private memory

kernel program
block work-group
thread work item

» Syntactic differences in kernel code
» C host-side API like CUDA C API
» Nothing like the CUDA language extensions!

Scalar Architecture

® NVIDIA GPUs have a scalar architecture
® Use vector types in OpenCL for convenience, not
performance

® Generally want more work-items rather than large
vectors per work-item

Optimize performance by overlapping memory
accesses with HW computation

® High arithmetic intensity programs (i.e. high ratio of math
to memory transactions)

® Many concurrent work-items

Take Advantage of __local Memory
® Hundreds of times faster than __global memory

® Work-items can cooperate via __local memory

® barrier() only needs CLK_LOCAL_MEM_FENCE, which is
much lower overhead

® Useitto manage locality

¢ Stage loads and stores in shared memory to optimize
reuse

Optimize Memory Access

® Assess locality of __global memory access patterns

HW coalescing of accesses within 128-byte memory blocks
1st Order performance effect

* Optimize for spatial locality of accesses in cached
texture memory (OpenCL Images)

Image reads may benefit from processing as 2D blocks

Experiment with work-group aspect ratio to discover what’s
best

® Let OpenCL allocate memory optimally

CL_MEM_ALLOC_HOST_PTR
The implementation can optimize alignment and location

Can still get access for the host via
clEnqueueMap{Buffer|image}

Architecture — Execution Model

Kernel - Smallest unit of execution, like a C
function
Host program — A collection of kernels

Work item, an instance of kernel at run time
Work group, a collection of work items

OpenCL Execution Model

* OpenCL Program:
- Kernels
- Basic unit of executable code — similar to C functions, CUDA kernels, etc.
- Data-parallel or task-parallel

- Host Program
- Collection of compute kernels and internal functions
- Analogous to a dynamic library

+ Kernel Execution

- The host program invokes a kernel over an index space called an NDRange
- NDRange, “N-Dimensional Range”, can be a 1D, 2D, or 3D space

- Asingle kernel instance at a point in the index space is called a work-item
- Work-items have unique global IDs from the index space

- Work-items are further grouped into work-groups
- Work-groups have a unique work-group 1D
- Work-items have a unique local ID within a work-group

OpenCL Execution Model

+ OpenCL Program:
Kernels
- Basic unit of executable code — similar to C functions, CUDA kernels, etc.
- Data-parallel or task-parallel

Host Program
- Collection of compute kernels and internal functions
- Analogous to a dynamic library

+ Kernel Execution

- The host program invokes a kernel over an index space called an NDRange
- NDRange, “N-Dimensional Range”, can be a 1D, 2D, or 3D space

- Asingle kernel instance at a point in the index space is called a work-item
- Work-items have unique global IDs from the index space

- Work-items are further grouped into work-groups
- Work-groups have a unique work-group 1D
- Work-items have a unique local ID within a work-group

Expressing Data-Parallelism in OpenCL

* Define N-dimensional computation domain (N =1, 2 or 3)

- Each independent element of execution in N-D domain is called a work-item
- The N-D domain defines the total number of work-items that execute in parallel

* E.g., process a 1024 x 1024 image: Global problem dimensions:
1024 x 1024 = 1 kernel execution per pixel: 1,048,576 total kernel executions

Scalar

void

scalar mul (int n,
const float *a,
const float *b,

float *result)
{

int i;

for (i=0; i<n; i++)

result[i] = a[i] * bB[i];

=)

Data Parallel

kernel wvoid

dp mul (global const float *a,
glebkal const fleoat *b,
global float *result)

{
int id = get _global id(0):;

result[id] = a[id] * b[id];
}

// execute dp mul over “n" work-items

& Copyright Khrones Group, 2009 - Page |

Global and Local Dimensions

* Global Dimensions: 1024 x 1024 (whole problem space)
* Local Dimensions: 128 x 128 (executed together)

1024

Synchronization between work-items

possible only within workgroups:
barriers and memory fences

Cannot synchronize outside
of a workgroup

1024

* Choose the dimensions that are “best” for your algorithm

@ Copyright Khranes Group, 2009 - Page 10

Kernel Execution

NDRange size G

|

work-group size S

work-group (W, , er

work-item

Wy B od,, w}' S.r-.i.r,'

L ij_i = {0 O}

work-item

iy Sx-bs# . S}_ui..

(By.5,) = (0, ﬁr""

work-item
fiw Sl . w, SJ"".'"

B | .
TEI.JII,I—:I'. r.l:}.'

work-item

fw S,_d-s‘. w, S'.-ﬁf"

(s, sfr = '.Sx"‘- Sr.ru

NDRange size G,

+ Total number of work-items = G, * G,
+ Size of each work-group = §, * §,

work-group size 5!.!

* Global ID can be computed from work-group ID and local ID

Programming Model

Data-Parallel Model

L]

Must be implemented by all OpenCL compute devices

L

Define N-Dimensional computation domain
- Eachindependent element of execution in an N-Dimensional domain is called a work-item

- N-Dimensional domain defines total # of work-items that execute in parallel
= global work size

Work-items can be grouped together — work-group

= Work-items in group can communicate with each other
= (Can synchronize execution among work-items in group to coordinate memory access

L]

Execute multiple work-groups in parallel
- Mapping of global work size to work-group can be implicit or explicit

Programming Model

Task-Parallel Model

+ Some compute devices can also execute task-parallel compute kernels

+ Execute as a single work-item

- A compute kermnel written in OpenCL
- Anative C / C++function

OpenCL Objects

» Setup
- Devices — GPU, CPU, Cell/B.E.
- Contexts — Collection of devices
- Queues — Submit work to the device

* Memory
- Buffers — Blocks of memory
- Images — 2D or 3D formatted images

* Execution
- Programs — Collections of kernels
- Kernels — Argument/execution instances

» Synchronization/profiling
- Events

@ Copyright Khranes Group, 2009 - Page 14

Context

L [} ¢)

Programs Kernels Command Queuesl

kernel void ol Images | Buffers iII
d lobal float * dp_mul
3 ::::E mmﬂtnfr:::t :;at & CPU pmgrunhlnaryl In
global float *c) Order
c[id] =afid] * blid];
alue

TR . b

& Copyright Khrones Group, 2009 - Page 15

Basic OpenCL Program Structure

* Host program
- Query compute devices | > Platform Layer

- Create memory objects associated to contexts
- Compile and create kernel program objects

- Issue commands to command-queue * Runtime
- Synchronization of commands

- Clean up OEenCL resources
* IKernels
- C code with some restrictions and extensions

Language

Memory Objects

+ Buffer objects
1D collection of objects (like C arrays)

- Scalar types & Vector types, as well as user-defined Structures
- Buffer objects accessed via pointers in the kernel

* Image objects

- 2D or 3D texture, frame-buffer, or images
Must be addressed through built-in functions

+ Sampler objects

Describe how to sample an image in the kernel
- Addressing modes

- Filtering modes

Command Queues

GPU Device

|(1::I_f.l&*t.«il:.&_id
cl_command_queue

A

independent gueues
must synchronlze
explicithy

cl_command_queue

3
In, ar aut of, order queues

Getting started

» [nitialization

 Creating of memory objects
» Transfering (input) data

» Execution

» Synchronization

» Transfering (output) data

» Cleanup

Getting started

Initialization

Get platform
clGetPlatformIDs

Get devices for platform
clGetDevicelDs

Create context for devices
clCreateContext

Create command queue on a device within
context

clCreateCommandQueue

Setup

1. Get the device(s)
2. Create acontext
3. Create command queue(s)

el uint num devices returned;

cl device id devices[2];

err = clGetDeviecelDs (HULL, CL DEVICE TYPE GPU, 1,
&dEvicesTDI z nu;_davi-ces_returnedl ;

err = clGetDevicelIDs (NULL, CL DEVICE TYPE CPU, 1,
&devices([l], &num devices returned);

cl context context;
context = clCreateContext(0, 2, devices, WULL, HULL, &err);

cl command queue queue gpu, queue cpu;
queue gpu clCreateCommandQueue (context, devices[0], 0, &errx);
queue cpu = clCreateCommandQueue(context, dewvices[l], 0, &err);

& Copyright Khronos Group, 2009 - Page 16

Choosing Devices

* A system may have several devices—which is best?
* The “best” device is algorithm- and hardware-dependent

¢ QLIEI"_V device info with: clcetbDeviceInfo (device, param name, *value)
- Number of compute unitS cL DEVICE MAX COMPUTE UNITS
- Clock frequency CL DEVICE MAX CLOCK FREQUENCY
- Memory size CL DEVICE GLOBAL MEM SIZE
- Extensions (double precision, atomics, etc.)

* Pick the best device for your algorithm

€ Copyright Khronos Group, 2009 - Page 18

Getting started

create memory objects

 Create Buffer object for context
- clCreateBuffer
» Create Image object for context

- clCreatelmage2D
- clCreatelmage3D

Allocating Images and Buffers

cl image format format;
format.image channel data type = CL_FLOAT;
format .image channel order = CL_RGBA;

cl mem input image;
input image = clCreatelmage2D (context, CL MEM READ ONLY, &format,
image width, image height, 0, NULL, &err);
cl mem output_ image;
output image = clCreatelmagelD (context, CL MEM WRITE ONLY, &format,
- image width, image halght 0, HULL gerr) ;

el mem input buffer;
input buffer = chreateBuffer(nnntaxt CL MEM READ ONLY,

sizeof (cl fluat]*d*:maga Hldth*lmage height, NULL, &err);
el mem output buffer;

output buffer = clCreateBuffer(context, CL MEM WRITE ONLY,
sizeof (cl flnat]*!*;mngn w;dfh*lmaga height, NULL, &err);

& Copyright Khrones Group, 2009 - Page 21

Memory Resources

* Buffers
- Simple chunks of memory
- Kernels can access however they like (array, pointers, structs)
- Kernels can read and write buffers

* Images
- Opaque 2D or 3D formatted data structures

- Kernels access only via read_image() and write_image()
- Each image can be read or written in a kernel, but not both

& Copyright Khrones Group, 2009 - Page 19

Image Formats and Samplers

* Formats
- Channel orders: CL A, CL RG, CL RGB, CL RGEA, €lC.
- Channel data type: CL UNORM INT8, CL FLOAT, €elC.

- clGetSupportedImageFormats () returns supported formats

+ Samplers (for reading images)
- Filter mode: linear or nearest

- Addressing: clamp, clamp-to-edge, repeat or none
- Normalized: true or false

* Benefit from image access hardware on GPUs

& Copyright Khronos Group, 2009 - Page 20

Getting started

transfer data

Read/Write/Copy Buffer/Image

clEnqueueRead/Write/Copy Buffer/Image

Copy between buffer and image

clEnqueueCopyBufferTolmage
clEnqueueCopylmageToBuffer

Map/Unmap Buffer/Image

clEnqueueMapBuffer/Image
clEnqueuelUnmapMemObiject

Reading / Writing Memory Object Data

« Explicit commands to access memory object data

* Read from a region in memory object to host memory

- clEnqueueReadBuffer (queue, object, blocking, coffset, size, *ptr, ...)
* Write to a region in memory object from host memory

- clEnqueueWriteBuffer (queue, object, blocking, offset, size, *ptr, ...)
* Map a region in memory object to host address space

- clEnqueueMapBuffer (queue, object, blocking, flags, offset, size, ...)

* Copy regions of memory objects
- clEnqueueCopyBuffer (queue, srcobj, dstob]j, src offset, dst offset, ...)

* Operate synchronously (blocking = CL_TRUE) or asynchronously

& Copyright Khronos Group, 2009 - Pags 22

Execution overview

Program source/binary, object, executable

Kernel object

Create, Set arguments, Execute

Create Program ‘
Program . Program Create Program Compile Program
source | “o™P*™ Binary Program | object & Build | executable—‘
Kernel object
Program Creatger Kernel | Set Kernel : = .
executable | Kernel | object Arguments’ e el

Arguments

Program objects

 Create program for context and load source

code/binary

- clCreateProgram\WithSource/Binary

» Compile and link program executable from
source or binary for specified devices

- clBuildProgram

Program

Create Program #
: Program Create Program Compile
source AR Binary Program J object & Build

Program
executable

Kernel objects

Create kernel object for a kernel within
program

clCreateKernel

Create kernel objects for all kernels of a
program

clCreateKernelsInProgram

Program Creats Kernel
executable | Kernel | object

Program and Kernel Objects

* Program objects encapsulate ...

- aprogram source or binary
- list of devices and latest successfully built executable for each device
- a list of kernel objects

* Kernel objects encapsulate ...
- a specific kernel function in a program - declared with the kernel qualifier

- argument values
- kernel objects created after the program executable has been built

& Copyright Khronos Group, 2009 - Pags 24

Executing Code

* Programs huild executable code for multiple devices
* Execute the same code on different devices

karnal woid
horizontal raflect({rsad only imagqe?d t =ara,
writs only imagald & dat)

{

int x = gat glahal id(0); // z-ccoxd

int vy = gat gloahal id(l); // y-ccoxd

int width = gat imsge width (=ra);

floatd ara val = read imagaf{ara, sampler,

{int2?) {width=1-2x,

¥)):
u:ibn_imugnfl!dst, (int2) (=, ¥), urﬂ_va.l};
}

‘ Compile for GPU -

‘ Compile for CPU I

& Copyright Khranes Group, 2000 - Pags 25

Kernel arguments

» Set kernel argument by index
- clSetKernelArg

Kernel object

Program Creatgf Kernel | Set Kernel :
executable | Kerne object Arguments’ with set
Arguments

Kernel execution

Enqueue execution of a kernel on a NDRange
ClIEnqueueNDRangeKernel
Enqueue execution of a single instance kernel
clEnqueueTask
Enqueue execution of a native C/C++ function
clEnqueueNativeKernel

Program
executable

Creat
Kernei

Kernel
object

Set Kernel

Arguments

Kernel object
with set

Arguments

—Exeedtion»

Work ltems

Executing Kernels

1. Set the kernel arguments
2. Enqueue the kernel

err = clSetKernelArg(kernel, 0, sizeof (input), &input) ;

err clSetKernelArg(kernel, 1, sizeof (output), &output) ;

size t global[3] = {image width, image height, 0};
err = clEnqueueNDRangeKernel (queue, kernel, 2, NULL, glebal, NULL, 0, NULL, NULL;

* Note: Your kernel is executed asynchronously

- Nothing may happen — you have just enqueued your kemel
- Use ablockingread elEnqueueRead* (... CL TRUE ...)

- Use events to track the execution status

@ Copyright Khronos Group, 2009 - Page 26

OpenCL C Language

- Data types

- Scalar/Vector (2,4,8,16)

- image2d_t/3d_t, sampler_t, event_t
» Adress space qualifiers

-__global, _local, constant, _ private
» Image access qualifiers

- __read_only, _write_only

* Function qualifiers

- ___kernel

Using Events on the Host

*clWaitForEvents (num events, *event list)
- Blocks until events are complete

* clEnqueueMarker (queue, *event)
- Returns an event for a marker that moves through the queue
* clEnqueueWaitForEvents (queue, num events, *event list)
- Inserts a "WaitForEvents” into the queue B B
*clGetEventInfo()

- Command type and status
CL_QUEUED, CL SUBMITTED, CL RUNNING, CL_COMPLETE, Of error code

*clGetEventProfilingInfo()
- Command queue, submit, start, and end times

& Copyright Khrones Group, 2009 - Page 31

Address Spaces

« Kernel pointer arguments must use global, local or constant

kernel void distance(global float8* stars, local floatB8* lncalmgtars}
kernel void sum(private int* p) // Illegal because is uses private

* Default address space for arguments and local variables is private

kernel void smooth(glcocbal float* io) {
float temp;

* image2d_t and image3d_t are always in global address space

kernel void average(read only global image t in, write only image2Zd t out)

& Copyright Khrones Group, 2009 - Page 43

CUDA vs OpenCL API
Differences

e Naming Schemes
e How data gets passes to the API

e C for CUDA programs are compiled
with an external tool (NVCC

compiler)
e OpenCL compiler it typically invoked

at runtime (you can offline compile
too0)

CUDA

culnit(0);
cuDeviceGet(&hContext, 0);
cuCtxCreate(&hContext, 0, hDevice));

CUdeviceptr pDeviceMemA, pDeviceMemB,
pDeviceMemC,;

cuMemAlloc(&pDeviceMemA, cnDimension *
sizeof(float));

cuMemAlloc(&pDeviceMemB, cnDimension *
sizeof(float));

cuMemAlloc(&pDeviceMemC, cnDimension *
sizeof(float));

/I copy host vectors to device
cuMemcpyHtoD(pDeviceMemA, pA, cnDimension
* sizeof(float));

cuMemcpyHtoD(pDeviceMemB, pB, cnDimension
* sizeof(float));

cuFuncSetBlockShape(cuFunction, cnBlockSize,
1, 1);
cuLaunchGrid (cuFunction, cnBlocks, 1);

OpenCL

cl_context hContext;
hContext = clCreateContextFromType(O,
CL_DEVICE_DEVICE_TYPE_GPU, 0,0,0);

cl_mem hDeviceMemA, hDeviceMemB,
hDeviceMemC;

hDeviceMemA = clCreateBuffer(hContext,
CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST _PTR,

cnDimension * sizeof(cl_float), pA, 0);
hDeviceMemB = clCreateBuffer(hContext,
CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR,

cnDimension * sizeof(cl_float), pA, 0);
hDeviceMemC = clCreateBuffer(hContext,
CL_MEM_WRITE_ONLY,

cnDimension * sizeof(cl_float) O, 0);

clEnqueueNDRangeKernel(hCmdQueue,
hKernel, 1, O,
&cnDimension, &cnBlockSize, 0O, 0O, 0);

CUDA Pointer Traversal

struct Node { Node* next; }
N = n->next; // undefined operation in OpenCL,
Il since ‘n” here is a kernel input

OpenCL Pointer Traversal

struct Node { unsigned int next; }

N = bufBase + n; // pointer arithmetic is fine, bufBase is
/l a kernel input param to the buffer’s beginning

Sample walkthrough oclVectorAdd

+ Simple element by element vector addition

For all i,

C(i) = A(i) + B(i)

* Outline
- Query compute devices
Create Context and Queue
Create memory objects associated to contexts
Compile and create kernel program objects

|ssue commands to command-queue
Synchronization of commands

Clean up OpenCL resources

CUDA Kernel code;

__global__ void

vectorAdd(const float * a, const float * b, float *)
{

Il Vector element index

int nindex = blockldx.x * blockDim.x + threadldx.X;
c[nIindex] = a[nindex] + b[nIndex];

}

OpenCL Kernel code:

__kernel void

vectorAdd(__global const float * a,
__global const float * b,

__global float * c)

{

Il Vector element index

Int nindex = get_global id(0);
c[nindex] = a[nIndex] + b[nIndex];

}

CUDA kernel functions are declared using the “ global "
function modifier

OpenCL kernel functions are declared using “ kernel”.

CUDA Driver APl Host code:

const unsigned int cnBlockSize = 512;

const unsigned int cnBlocks = 3;

const unsigned int cnDimension = cnBlocks * cnBlockSize;
CUdevice hDevice;

CUcontext hContext;

CUmodule hModule;

CUfunction hFunction;

/I create CUDA device & context

culnit(0);

cuDeviceGet(&hContext, 0); // pick first device
cuCtxCreate(&hContext, 0, hDevice));
cuModuleLoad(&hModule, “vectorAdd.cubin®);
cuModuleGetFunction(&hFunction, hModule, "vectorAdd");

/I allocate host vectors

float * pA = new float[cnDimension];

float * pB = new float[cnDimension];

float * pC = new float[cnDimension];

/I initialize host memory

randomlinit(pA, cnDimension);

randomlinit(pB, cnDimension);

/I allocate memory on the device

CUdeviceptr pDeviceMemA, pDeviceMemB, pDeviceMemcC;
cuMemAlloc(&pDeviceMemA, cnDimension * sizeof(float));
cuMemAlloc(&pDeviceMemB, cnDimension * sizeof(float));
cuMemAlloc(&pDeviceMemC, cnDimension * sizeof(float));

/I copy host vectors to device

cuMemcpyHtoD(pDeviceMemA, pA, cnDimension * sizeof(float));
cuMemcpyHtoD(pDeviceMemB, pB, cnDimension * sizeof(float));
/l setup parameter values

cuFuncSetBlockShape(cuFunction, cnBlockSize, 1, 1);
cuParamSeti(cuFunction, 0, pDeviceMemA);
cuParamSeti(cuFunction, 4, pDeviceMemB);
cuParamSeti(cuFunction, 8, pDeviceMemCQ);
cuParamSetSize(cuFunction, 12);

/I execute kernel

cuLaunchGrid(cuFunction, cnBlocks, 1);

/Il copy the result from device back to host
cuMemcpyDtoH((void *) pC, pDeviceMemC, cnDimension * sizeof(float));
delete[] pA; delete[] pB; delete[] pC;
cuMemFree(pDeviceMemA); cuMemFree(pDeviceMemB); cuMemFree(pDeviceMem<C);

OpenCL Host Code:

const unsigned int cnBlockSize = 512;

const unsigned int cnBlocks = 3;

const unsigned int cnDimension = cnBlocks * cnBlockSize;

/I create OpenCL device & context

cl_context hContext;

hContext = clCreateContextFromType(0O, CL_DEVICE_TYPE_

0, 0, 0);

/I query all devices available to the context

size_t nContextDescriptorSize;

clGetContextinfo(hContext, CL_ CONTEXT_DEVICES,

0, 0, &nContextDescriptorSize);

cl _device_id * aDevices = malloc(nContextDescriptorSize);
clGetContextinfo(hContext, CL_ CONTEXT_DEVICES,
nContextDescriptorSize, aDevices, 0);

/I create a command queue for first device the context reported
cl_command_queue hCmdQueue;

hCmdQueue = clCreateCommandQueue(hContext, aDevices|[0], O, 0);
/I create & compile program

cl_program hProgram;

hProgram = clCreateProgramWithSource(hContext, 1,
sProgramSource, 0, 0);

clBuildProgram(hProgram, 0O, O, 0O, O, 0);

/I create kernel

cl_kernel hKernel,

hKernel = clCreateKernel(hProgram, “vectorAdd”, 0);

/I allocate host vectors

float * pA = new float[cnDimension];

float * pB = new float[cnDimension];

float * pC = new float[cnDimension];

/I initialize host memory

randomlinit(pA, cnDimension);

randomlinit(pB, cnDimension);

/I allocate device memory

cl_mem hDeviceMemA, hDeviceMemB, hDeviceMemC,;
hDeviceMemA = clCreateBuffer(hContext,

CL_MEM_READ_ONLY | CL_ MEM_COPY_HOST_PTR, cnDimension * sizeof(cl_float), pA, 0);
hDeviceMemB = clCreateBuffer(hContext, CL_ MEM_READ_ONLY | CL_MEM_COPY_HOST _PTR, cnDimension *
sizeof(cl_float), pA, 0);

hDeviceMemC = clCreateBuffer(hContext, CL_ MEM_WRITE_ONLY, cnDimension * sizeof(cl_float), 0, 0);
/l setup parameter values

clSetKernelArg(hKernel, 0, sizeof(cl_mem), (void *)&hDeviceMemA);

Declarations

cl_context cxMainContext;
cl_command_queue cqCommandQue;
cl_device id* cdDevices;
cl_program cpProgram;
cl_kernel ckKernel;

cl_mem cmMemObjs[3];
cl_int ciErrNum =0;

size_t szGlobalWorkSize[1];
size_t szLocalWorkSize[1];
size_t szParmDataBytes;
size_t szKernelLength;

/[l OpenCL context

/[l OpenCL command que

Il OpenCL device list

Il OpenCL program

Il OpenCL kernel

/[l OpenCL memory buffer objects
Il Error code var

/I Global # of work items

Il # of Work ltems in Work Group
Il byte length of parameter storage
Il byte Length of kernel code

int iTestN =10000; /I Length of demo test vectors

Contexts and Queues

Il create the OpenCL context on a GPU device
cxMainContext = clCreateContextFromType (0, CL DEVICE TYPE GPU, NULL, NULL, NULL);

Il get the list of GPU devices associated with context

clGetContextInfo (cxMainContext, CL_CONTEXT_DEVICES, 0, NULL, &szParmDataBytes);
cdDevices = (cl_device_id*)malloc(szParmDataBytes);

clGetContextInfo (cxMainContext, CL_CONTEXT_DEVICES, szParmDataBytes, cdDevices, NULL);

Il create a command-queue
cqgCommandQue = clCreateCommandQueue (cxMainContext, cdDevices[0], 0, NULL);

Create Memory Objects

I allocate the first source buffer memory object... source data, so read only
cmMemObjs[0] = cICreateBuffer (cxMainContext,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float) * iTestN, srcA, NULL);

I allocate the second source buffer memory object ... source data, so read only
cmMemObjs[1] = cICreateBuffer (cxMainContext,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float) * iTestN, srcB, NULL);

I allocate the destination buffer memory object ... result data, so write only
cmMemObjs[2] = cICreateBuffer (cxMainContext, CL_MEM_WRITE_ONLY,
sizeof(cl_float) * iTestN, NULL, NULL);

Create Program and Kernel

Il create the program, in this case from OpenCL C source string array
cpProgram = clCreateProgramWithSource (cxMainContext, SOURCE_NUM_LINES,

cVectorAdd, NULL, &ciErrNum);

Il build the program
ciErrNum = cIBuildProgram (cpProgram, 0, NULL, NULL, NULL, NULL);

Il create the kernel
ckKernel = cICreateKernel (cpProgram, "VectorAdd", &ciErrNum);

Il set the kernel Argument values

CiErrNum = clSetKernelArg (ckKernel, 0, sizeof(cl_mem), (void*)&emMemObjs[0]);
CiErrNum |= clSetKernelArg (ckKernel, 1, sizeof(cl_mem), (void*)&emMemObjs[1]);
ciErrNum |= cISetKernelArg (ckKernel, 2, sizeof(cl_mem), (void*)&emMemObjs[2]);

Launch Kernel and Read Results

Il set work-item dimensions
szGlobalWorkSize[0] = iTestN;
szLocalWorkSize[0]= 1;

Il execute kernel
ciErrNum = clEnqueueNDRangeKernel (cqCommandQue, ckKernel, 1, NULL,
szGlobalWorkSize, szLocalWorkSize,
0, NULL, NULL);

ll read output
ciErrNum = clEnqueueReadBuffer(cgCommandQue, cmMemObjs[2], CL_TRUE,
0, iTestN * sizeof(cl_float), dst, 0, NULL, NULL);

Cleanup

/| release kernel, program, and memory objects
DeleteMemobjs (cmMemObjs, 3);

free (cdDevices);

clReleaseKernel (ckKernel);

clReleaseProgram (cpProgram);
clReleaseCommandQueue (cqCommandQue);
clReleaseContext (cxMainContext);

OpenCL Profiler Overview

Profiler facilitates analysis and optimization of
OpenCL programs by:
Reporting hardware counter values:
* Number of various bus transactions
* Branches

» Effective Parallelism
* Etc.

Computing per kernel statistics:
» Effective instruction throughput
» Effective memory throughput

Visually displaying time spent in various GPU calls
Requires no instrumentation of the source code

OpenCL Profiler Example

Time profile of GPU operations

& untitled - OpenCL Visual ProFiler - [Seevion] - Devica 0 - Context 0]
e Mo Seamon Mew JOpbone Wirdow llelp

Dw@ Db E=dx &

Srssinns F ¥ Frofike Oubpot Sumimary Tabks L Tims Summary Fiot P Time Height Flot (0] | @ Time Sickh piot
= SESEINL
=i - Device_[I
Cankest_0

Helght Hlot

=1 mamcoyLaoD
O mamcpy LU ST
. iTia e gy DbcH

m e

B memcpyHooHasme
B U Time Ccrhood

Tm ¢ 16692

OpenCL Profiler Sample Uses

* Determining whether kernel performance is bound
by instruction or memory throughput

Determining whether performance is limited by
kernel execution or data transfer times

Determining percentage of the application time
spent in each kernel

= untitled - OpenCL Visual Profiler

File Sesdon Wiew ©Options Window Help

Nl Db BEdT

Profiar Cubpit Sunmin Ta
Method GPL e gid 32b gld E4b old 1260

1 stencl_30_16x| 20748.9 1125960

Personal Aside...

I’m a bit skeptical...
1) S I Owe r Source: Matt Harvey Porting CUDA to OpenCL

Stage CUDA Nvidia OCL Speedup
Bonded terms 0.396 0477 -1.1x
Binning 0.863 3.833 -4 .4x
Nonbonded terms 26.548 39.408 -1.5x
Integration 0.000 0.184 -2.0x
Total 28.506 43.924 -1.5x

NVidia Tesla C1060, HP xw6600, 2 x Xeon 5430, Centos 5.4, CUDA 3.0 beta
Model: Gramicidin-A 20042 atoms, cutoeff=12A switch=10.54

2) NVIDIA has to fully commit...

More Performance notes...

Stage CUDA ATl OCL Speedup
Bonded terms 0.396 1.930 -2.2x
Binning™ 16.438 61.981 -3.8x
Nonbonded terms 26.548 168.342 -6.3x
137.94 -5.1x
Integration 0.090 0.489 -5.4x
Total 44.081 234196 -5.3x

MNVidia Tesla C1060, HP xw6600, 2 x Xeon 5430, Centos 5.4, CUDA 3.0 beta
ATI 4850 (=1TFLOP), HP xw6600, 2 x Xeon 5430, CentOS 5.4, ATl OpenCL beta 4
Model: Gramicidin-A 20042 atoms, cutoff=12A switch=10.54A

P Slow alogrithm for binning (ne atomic memory operations)

Source: Matt Harvey Porting CUDA to OpenCL

