# CSE 590 Data Science Fundamentals

# TIME SERIES DATA

### **KLAUS MUELLER**

#### COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY AND SUNY KOREA

| Lecture | Торіс                                     | Projects                                  |
|---------|-------------------------------------------|-------------------------------------------|
| 1       | Intro, schedule, and logistics            |                                           |
| 2       | Data Science components and tasks         |                                           |
| 3       | Data types                                | Project #1 out                            |
| 4       | Introduction to R, statistics foundations |                                           |
| 5       | Introduction to D3, visual analytics      |                                           |
| 6       | Data preparation and reduction            |                                           |
| 7       | Data preparation and reduction            | Project #1 due                            |
| 8       | Similarity and distances                  | Project #2 out                            |
| 9       | Similarity and distances                  |                                           |
| 10      | Cluster analysis                          |                                           |
| 11      | Cluster analysis                          |                                           |
| 12      | Pattern miming                            | Project #2 due                            |
| 13      | Pattern mining                            |                                           |
| 14      | Outlier analysis                          |                                           |
| 15      | Outlier analysis                          | Final Project proposal due                |
| 16      | Classifiers                               |                                           |
| 17      | Midterm                                   |                                           |
| 18      | Classifiers                               |                                           |
| 19      | Optimization and model fitting            |                                           |
| 20      | Optimization and model fitting            |                                           |
| 21      | Causal modeling                           |                                           |
| 22      | Streaming data                            | Final Project preliminary report due      |
| 23      | Text data                                 |                                           |
| 24      | Time series data                          |                                           |
| 25      | Graph data                                |                                           |
| 26      | Scalability and data engineering          |                                           |
| 27      | Data journalism                           |                                           |
|         | Final project presentation                | Final Project slides and final report due |

# MINING TIME-SERIES DATA

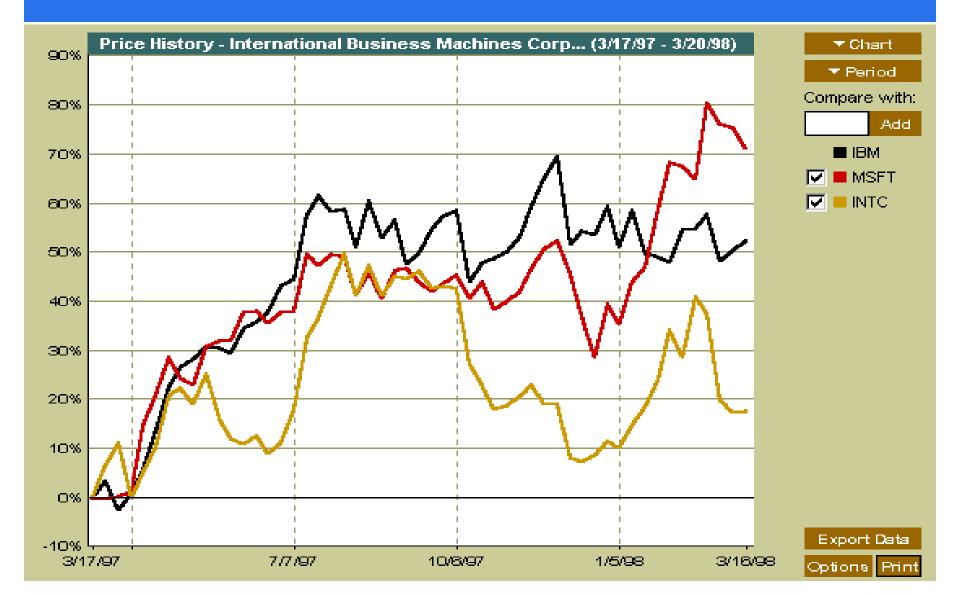
#### Time-series database

- consists of sequences of values or events changing with time
- data is recorded at regular intervals
- characteristic time-series components
  - trends, cycles, seasonal, irregular

Applications

- financial: stock price, inflation
- industry: power consumption
- scientific: experiment results
- meteorological: precipitation





# CATEGORIES OF TIME-SERIES MOVEMENTS

**Categories of Time-Series Movements** 

- long-term or trend movements (trend curve): general direction in which a time series is moving over a long interval of time
- cyclic movements or cycle variations: long term oscillations about a trend line or curve
  - e.g., business cycles, may or may not be periodic
- seasonal movements or seasonal variations
  - i.e, almost identical patterns that a time series appears to follow during corresponding months of successive years.
- irregular or random movements

Time series analysis: decomposition of a time series into these four basic movements

- additive model: TS = T + C + S + I
- multiplicative model:  $TS = T \times C \times S \times I$

# TEMPORAL SIMILARITY MEASURES

Time series are in some sense similar to discrete sequences

- but differences apply
- discrete sequence data are not always temporal
- for example, gene data
- many of the similarity measures used for time series and discrete sequences can be reused across either domain
- but some of the measures are more suited to one of the domains

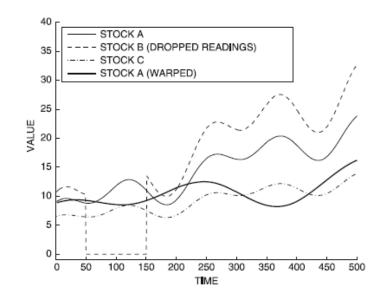
Distinguish between

- temporal (or placement) attribute
- behavioral attribute

## THE BEHAVIORAL ATTRIBUTE

May be subject to

- scaling
- translation
- noise



May show similar patterns of movements, but the absolute values may be very different

- mean and standard deviation may be different
- but patterns are similar
- difficult to compare when standard metrics are used

### THE TEMPORAL OR PLACEMENT ATTRIBUTE

Also called *contextual* attribute

- in some applications different (simultaneous) time series may represent the same period of time (e.g., stocks)
- in other applications the time stamp is not important (e.g., medical data)
- in this case the time series need to be shifted for comparisons

Temporal (contextual) attribute scaling

- series may need to be stretched or compressed along the temporal axis to allow more effective matching
- may need to use different warp functions depending on time

### BEHAVIORAL ATTRIBUTE NORMALIZATION

Behavioral attribute translation:

• the behavioral attribute is mean centered during preprocessing

Behavioral attribute scaling:

 the standard deviation of the behavioral attribute is scaled to 1 unit

Normalization is generally easier for the behavioral attribute

can typically be done during pre-processing

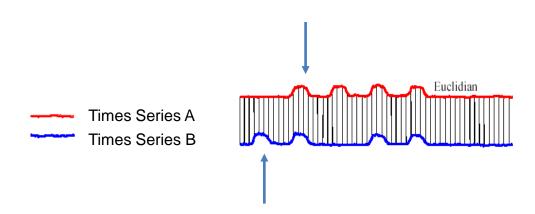
# $L_{P}$ Norm and its Shortcomings

Standard pairwise distance

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}$$

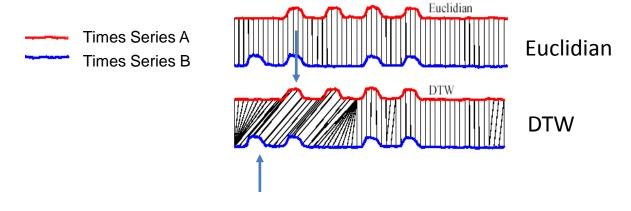
Shortcomings:

- designed for time series of equal length
- cannot address distortions on the temporal (contextual) attributes



# DYNAMIC TIME WARPING DISTANCE

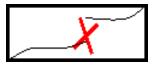
#### Can better accommodate local mismatches

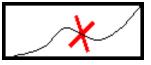


#### Three constraints

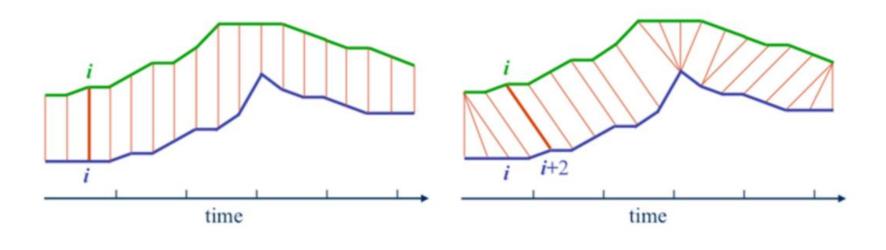
- no skipping of beginning or ends of either sequence
- continuity no jumps
- monotonicity can't go back in time







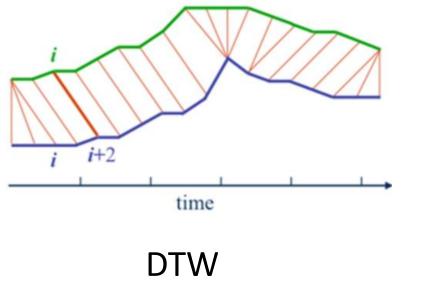
### DTW – FIND THE MINIMUM COST PATH

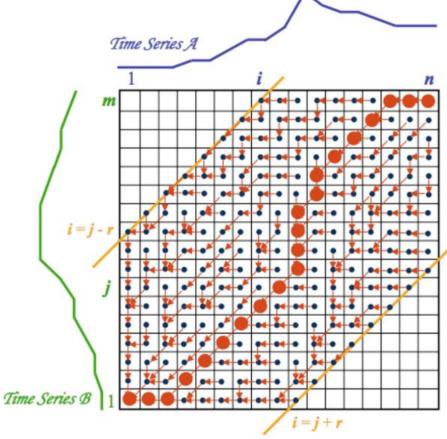


Euclidian

DTW

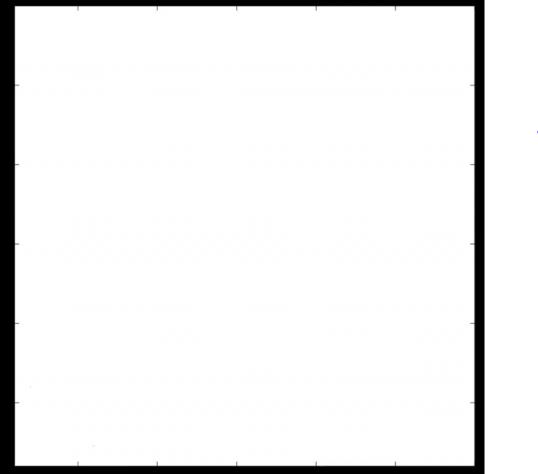
### DTW – FIND THE MINIMUM COST PATH





Compute using dynamic programming





#### YouTube video

# ESTIMATION OF TREND CURVE

#### The freehand method

- Fit the curve by looking at the graph
- Costly and barely reliable for large-scaled data mining

#### The least-square method

 Find the curve minimizing the sum of the squares of the deviation of points on the curve from the corresponding data points

The moving-average method

### MOVING AVERAGE

#### Moving average of order n

$$\frac{y_1 + y_2 + \dots + y_n}{n}, \frac{y_2 + y_3 + \dots + y_{n+1}}{n}, \frac{y_3 + y_4 + \dots + y_{n+2}}{n}, \dots$$

- Smoothes the data
- Eliminates cyclic, seasonal and irregular movements
- Loses the data at the beginning or end of a series
- Sensitive to outliers (can be reduced by weighted moving average)

### TREND DISCOVERY IN TIME-SERIES (1): ESTIMATION OF SEASONAL VARIATIONS

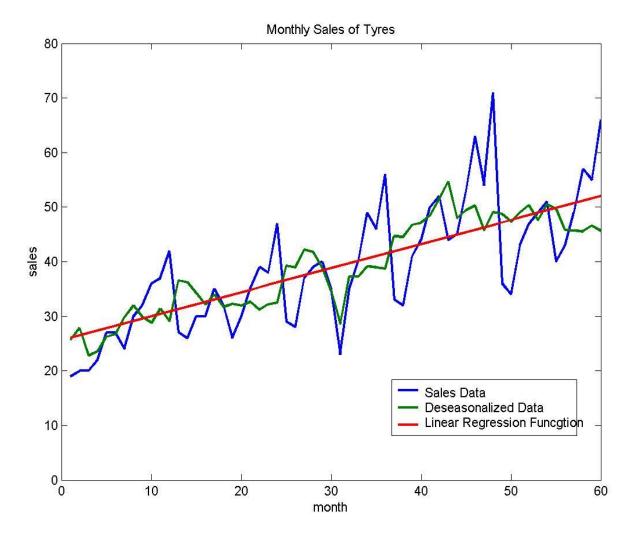
Seasonal index

- Set of numbers showing the relative values of a variable during the months of the year
- E.g., if the sales during October, November, and December are 80%, 120%, and 140% of the average monthly sales for the whole year, respectively, then 80, 120, and 140 are seasonal index numbers for these months

Deseasonalized data

- Data adjusted for seasonal variations for better trend and cyclic analysis
- Divide the original monthly data by the seasonal index numbers for the corresponding months

## SEASONAL INDEX



### SIMILARITY SEARCH IN TIME-SERIES ANALYSIS

Normal database query finds exact match Similarity search finds data sequences that differ only slightly from the given query sequence

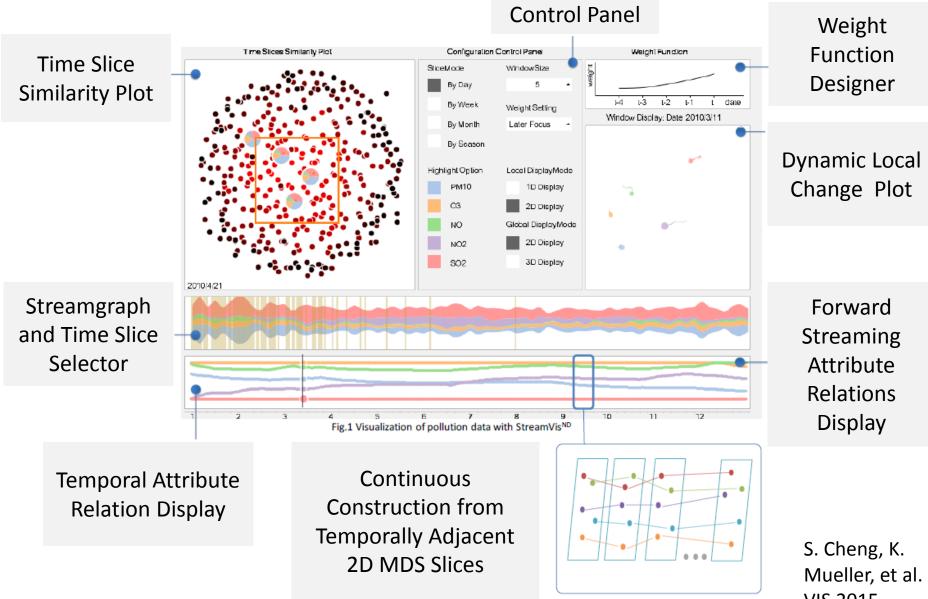
Two categories of similarity queries

- Whole matching: find a sequence that is similar to the query sequence
- Subsequence matching: find all pairs of similar sequences

#### **Typical Applications**

- Financial market
- Market basket data analysis
- Scientific databases
- Medical diagnosis

#### STREAMVISND: VISUALIZING RELATIONSHIPS IN STREAMING MULTIVARIATE DATA



**VIS 2015** 

# TIME WINDOWS

Can be day, week, month, year, and so on

Better fitting time windows could be found by periodicity

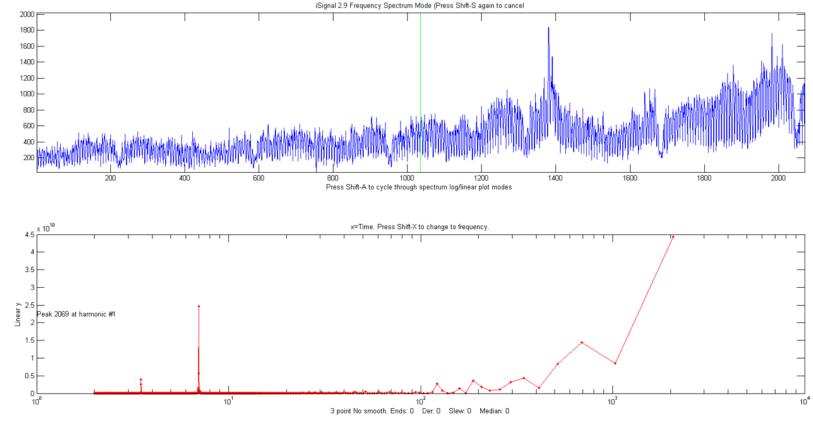
- do a Fourier analysis of the time sequence
- find significant frequencies = intrinsic periodicity in the *periodogram*

Example (see next page)

- world-wide daily page views of a web site over a 2070-day period (about 5.5 years).
- observe a strong sharp peak at 7 days, corresponding to the expected workday/weekend cycle
- smaller peak at 365 days (corresponding to a sharp dip each year during the winter holidays)
- smaller peak at 182 days (roughly a half-year), probably caused by increased use in the two-per-year semester cycle at universities.

### PERIODOGRAM EXAMPLE

#### Time



Periodogram

# TIME WINDOWS

Once time windows are established one can do

- clustering
- classification
- correlation analysis
- causal analysis
- predictive analysis
- outlier (anomaly) detection
- and so on

### AUTOREGRESSIVE MODEL

The value of  $y_t$  at time t is defined as a linear combination of the values in the immediately preceding window of length p

$$y_t = \sum_{i=1}^p a_i \cdot y_{t-i} + c + \epsilon_t$$

The values of the regression coefficients  $a_1 \dots a_{p}$ , c need to be learned from the training data

Can use it to

- predict (forecast) future time events (given the change is small)
- compare other time series by predicting it