CSE 590 Data Science Fundamentals

SIMILARITY AND DISTANCES

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY AND SUNY KOREA

Lecture	Торіс	Projects	
1	Intro, schedule, and logistics		
2	Data Science components and tasks		
3	Data types	Project #1 out	
4	Introduction to R, statistics foundations		
5	Introduction to D3, visual analytics		
6	Data preparation and reduction		
7	Data preparation and reduction	Project #1 due	
8	Similarity and distances	Project #2 out	
9	Similarity and distances		
10	Cluster analysis		
11	Cluster analysis		
12	Pattern miming	Project #2 due	
13	Pattern mining		
14	Outlier analysis		
15	Outlier analysis	Final Project proposal due	
16	Classifiers		
17	Midterm		
18	Classifiers		
19	Optimization and model fitting		
20	Optimization and model fitting		
21	Causal modeling		
22	Streaming data	Final Project preliminary report due	
23	Text data		
24	Time series data		
25	Graph data		
26	Scalability and data engineering		
27	Data journalism		
	Final project presentation	Final Project slides and final report due	

INTRODUCTION

Please also refer to the statistics foundations lecture

- many distance metrics were discussed there already
- Euclidian, cosine, correlation, ...

Topics discussed now

- curse of dimensionality
- structural similarity distance

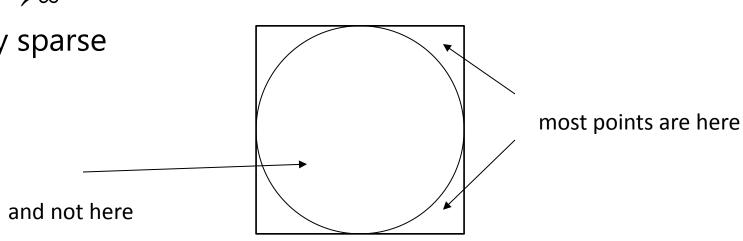
HIGH-D SPACE IS TRICKY

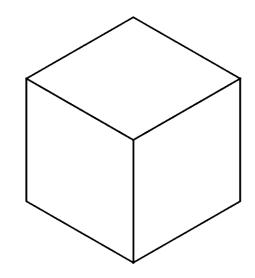
The curse of dimensionality

As $n \to \infty$

- Cube: side length *l*, diagonal *d*, volume *V*
- $V \rightarrow \infty$ for l > 1
- $V \rightarrow 0$ for l < 1
- *V* = 0 for *l* = 1
- $d \rightarrow \infty$

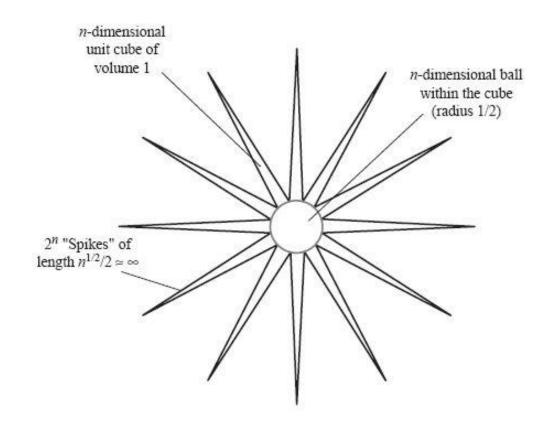
and very sparse





HIGH-D SPACE IS TRICKY

Essentially hypercube is like a "hedgehog"



CURSE OF DIMENSIONALITY

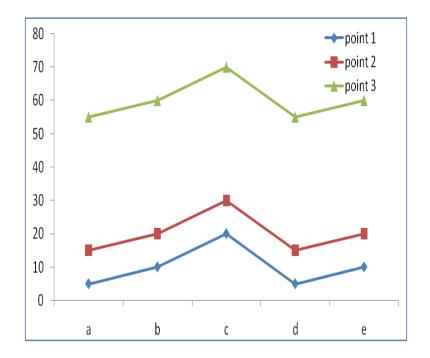
Points are all at about the same distance from one another

- concentration of distances
- fundamental equation (Bellman, '61)

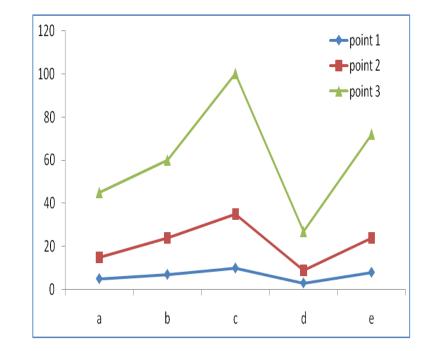
$$\lim_{n \to \infty} \frac{Dist_{\max} - Dist_{\min}}{Dist_{\min}} \to 0$$

- so as *n* increases, it is impossible to distinguish two points by (Euclidian) distance
 - unless these points are in the same cluster of points
 - need to use other distance metrics

SIMILARITY OF N-D POINTS



Same pattern, with offset



Same pattern, with scaling

DISTANCE IN HIGH-D SPACE

MDS optimization function:

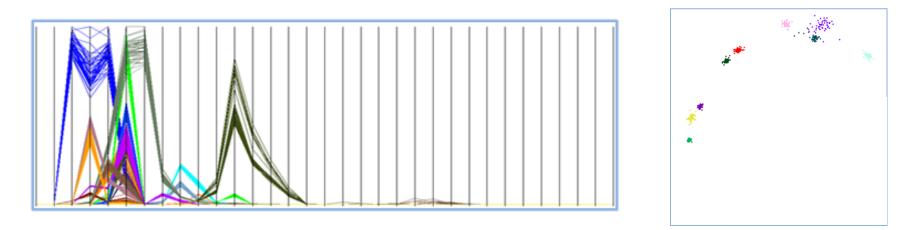
$$\min(y_1, ..., y_n) \sum_{i < j} \left(\left\| y_i - y_j \right\| - \delta_{ij} \right)^2$$

Euclidian distance
measures point-pair error

sums all

distance in 2D

WHY IS THE EUCLIDIAN DISTANCE LESS IDEAL?



Perceptual (dis)similarity is not gauged by a Euclidian metric

- our cognitive faculties look for *pattern* similarity
- poly lines with similar pattern signature are deemed *closer*
- the equivalent points need to also be *closer* in the MDS plot
- need a new perceptual distance metric that gauges this pattern similarity

STRUCTURAL SIMILARITY INDEX (SSIM)

$$SSIM(xy) = \begin{bmatrix} 2\mu_x\mu_y + c_1 \\ \mu_x^2 + \mu_y^2 + c_1 \end{bmatrix}^{\alpha} \begin{bmatrix} 2\sigma_x\sigma_y + c_2 \\ \sigma_x^2 + \sigma_y^2 + c_2 \end{bmatrix}^{\beta} \cdot \begin{bmatrix} \sigma_{xy} + c_3 \\ \sigma_x\sigma_y + c_3 \end{bmatrix}^{\gamma}$$

Iuminance contrast structure

y

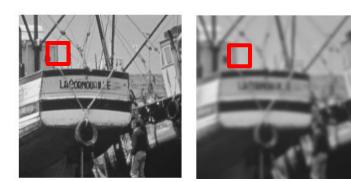
Х

STRUCTURAL SIMILARITY INDEX (SSIM)

$$SSIM(xy) = \left[\frac{2\mu_x\mu_y + c_1}{\mu_x^2 + \mu_y^2 + c_1}\right]^{\alpha} \cdot \left[\frac{2\sigma_x\sigma_y + c_2}{\sigma_x^2 + \sigma_y^2 + c_2}\right]^{\beta} \cdot \left[\frac{\sigma_{xy} + c_3}{\sigma_x\sigma_y + c_3}\right]^{\gamma}$$

luminance contrast structure

frequently pooled over a 11×11 sliding window



$$SSIM_{pooled} = \frac{1}{n_w} \sum_{i=1}^{n_w} SSIM(x_i, y_i)$$

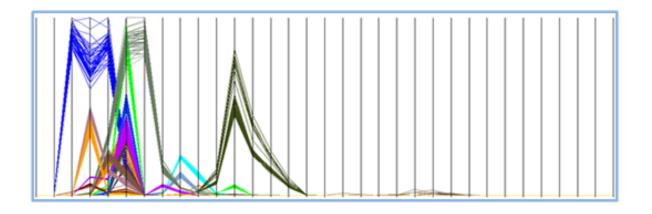
Example from Image Processing

original contrast stretched blurred salt + pepper

Both images have the same MSE but different SSIM

- SSIM = 0.91, 0.71, 0.77
- Euclidian distance expression is similar to that of MSE
- hence it can be expected that SSIM will do better when ported

ANALOGY OF SSIM TO ND DISTANCE

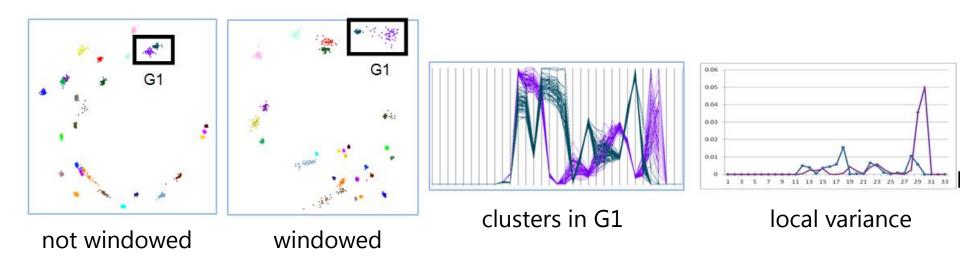


Just like images, polylines have

- Iuminance \rightarrow mean
- contrast
- structure ← evaluates the structural similarity after the differences in mean and contrast have been accounted for

	Parallel coordinates	mean(x,y)	contrast(x,y)	structure(x,y)	SSIM(x,y)
1			·	•	•
2			:		•.
3				· .	•
4				•	•
5		•	•	•	•
6		•			•
7					•
8			•.	•	•

EFFECT OF WINDOWING



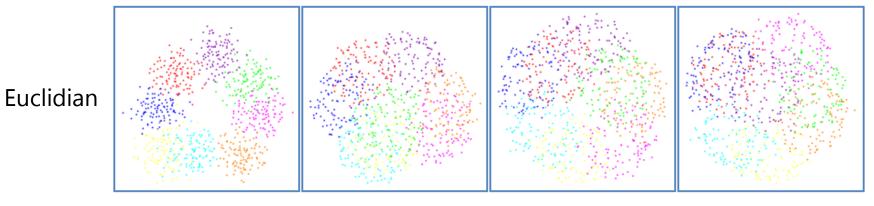
Procedure

- order dimensions such that sum of pairwise correlations is maximized
- use 11-point window

Observations

- purple cluster has higher local variance than blue
- with windowing it has an equivalent spread in the MDS plot
- without windowing this effect is averaged out and likewise in MDS

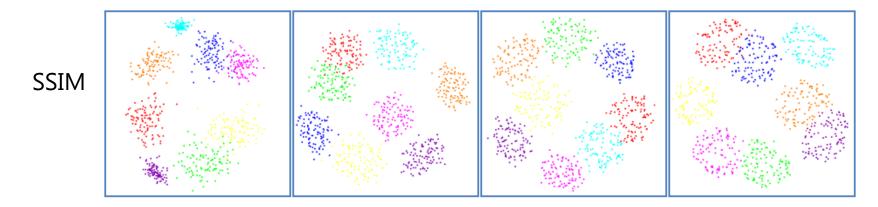
ACHIEVES BETTER CLUSTER SEPARABILITY



dimensions

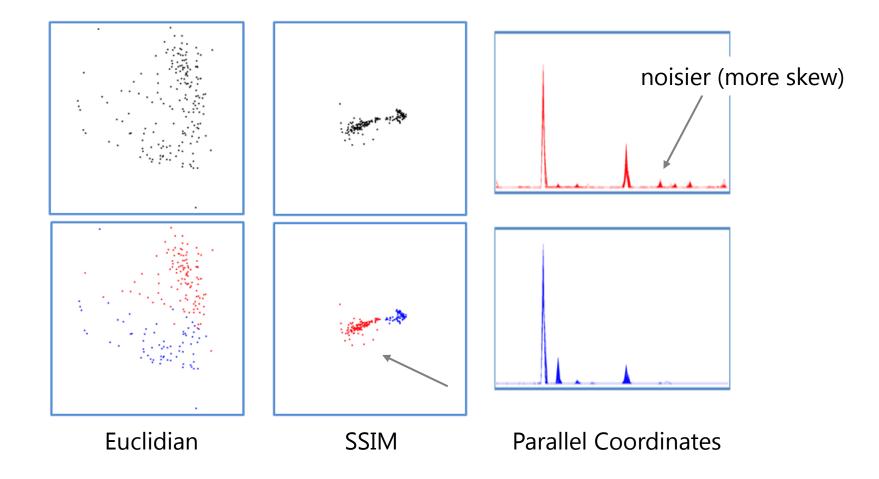
6

800



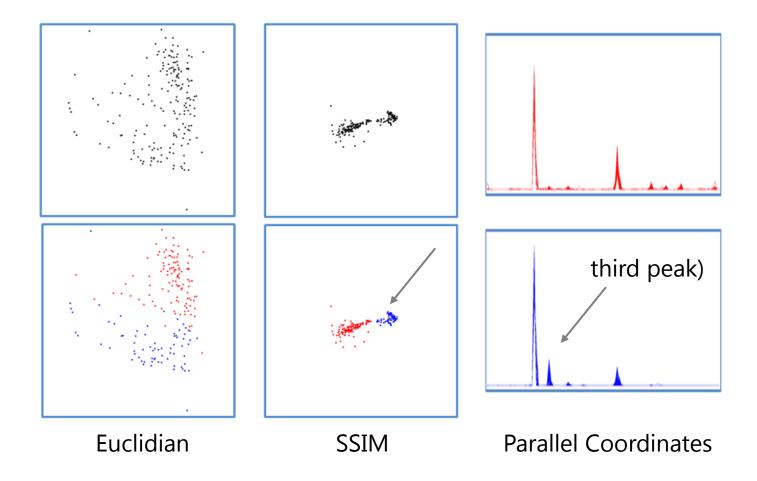
8 clusters, 800 data points

MASS SPECTRA DATA



Mass Spectra of Aerosol Particles, 450 D, 2,000 data points

MASS SPECTRA DATA



Mass Spectra of Aerosol Particles, 450 D, 2,000 data points