CSE 590

 DATA SCIENCE FUNDAMENTALS
Pattern And Association Mining

Klaus Mueller

Computer Science Department Stony Brook University and SUNY Korea

Lecture	Topic	
$\mathbf{1}$	Intro, schedule, and logistics	
$\mathbf{2}$	Data Science components and tasks	Project \#1 out
$\mathbf{3}$	Data types	
$\mathbf{4}$	Introduction to R, statistics foundations	
$\mathbf{5}$	Introduction to D3, visual analytics	Project \#1 due
$\mathbf{6}$	Data preparation and reduction	Project \#2 out
$\mathbf{7}$	Data preparation and reduction	
$\mathbf{8}$	Similarity and distances	
$\mathbf{9}$	Similarity and distances	Project \#2 due
$\mathbf{1 0}$	Cluster analysis	
$\mathbf{1 1}$	Cluster analysis	Final Project proposal due
12	Pattern mining	
13	Pattern mining	
14	Outlier analysis	
$\mathbf{1 5}$	Outlier analysis	
$\mathbf{1 6}$	Classifiers	
$\mathbf{1 7}$	Midterm	Final Project preliminary report due
$\mathbf{1 8}$	Classifiers	
$\mathbf{1 9}$	Optimization and model fitting	
$\mathbf{2 0}$	Optimization and model fitting	
$\mathbf{2 1}$	Causal modeling	
$\mathbf{2 2}$	Streaming data	
$\mathbf{2 3}$	Text data	
$\mathbf{2 4}$	Time series data	Final Project slides and final report due
$\mathbf{2 5}$	Graph data	
$\mathbf{2 6}$	Scalability and data engineering	
$\mathbf{2 7}$	Data journalism	
	Final project presentation	

FREQUENT PATTERN (FP) ANALYSIS

Frequent pattern:

- a pattern (set of items) that occurs frequently in a data set
- called frequent itemsets (Agrawal et al. (1993)

Motivation: find inherent regularities in data

- what products were often purchased together?
- the classic example: beer and diapers?
- what are the subsequent purchases after buying a PC?
- what kinds of DNA are sensitive to this new drug?
- can we automatically classify web documents?

Applications

- basket data analysis, cross-marketing, catalog design, sales campaign analysis, Web log (click stream) analysis, DNA sequence analysis

TRANSACTION DATA -SUPERMARKET

Market basket transactions:

t1: \{beer, nuts, diaper\}
t2: \{beer, coffee, diaper\}
tn: \{nuts, coffee, diaper., eggs, milk\}

Concepts:

- an item: an item/article in a basket
- I: the set of all items sold in the store
- A transaction: items purchased in a basket; it may have a TID (transaction ID)
- A transactional dataset: A set of transactions

IMPORTANCE OF FP MINING

Frequent pattern:

- an intrinsic and important property of datasets

Foundation for many essential data mining tasks

- association, correlation, and causality analysis
- sequential, structural (e.g., sub-graph) patterns
- pattern analysis in spatiotemporal, multimedia, time-series, and stream data
- classification: discriminative, frequent pattern analysis
- cluster analysis: frequent pattern-based clustering
- data warehousing
- semantic data compression
- other broad applications

Frequent Patterns

itemset: a set of one or more items

- $X=\{$ milk, bread, cereal $\}$ is an itemset k-itemset: $X=\left\{x_{1}, \ldots, X_{k}\right\}$
- \{milk, bread, cereal\} is a 3-itemset (absolute) support, or, support count of X : frequency or occurrence of an itemset X
(relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
an itemset X is frequent if X 's support is

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

 no less than a minsup threshold

AsSOCIATION RULES

Find all the rules $X \rightarrow Y$ with minimum support and confidence

- support, s, probability that a transaction contains $X \cup Y$
- confidence, c, conditional probability that a transaction having X also contains Y

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Example:

- let minsup $=50 \%$, minconf $=50 \%$
- FP: Beer: $s=3 / 5$, Nuts: $s=3 / 5$, Diaper: $s=4 / 5$, Eggs: $s=3 / 5$, $\{$ Beer, Diaper\}: $\mathrm{s}=3 / 5$

Association rules: (many more!)

- Beer \rightarrow Diaper

$$
(s(B)=60 \%, c(D \mid B)=100 \%)
$$

- Diaper \rightarrow Beer

$$
(s(D)=80 \%, c(B \mid D=75 \%)
$$

PATTERN MINING ALGORITHMS

Realistic databases have a large number of patterns

- can be expensive to mine
- hence there are many mining algorithms
- they use different strategies and data structures
- their resulting sets of rules are all the same.

Given a transaction data set T , and a minimum support and a minimum confidence, the set of association rules existing in T is uniquely determined

- any algorithm should find the same set of rules although their computational efficiencies and memory requirements may be different

THE ITEMSET LATTICE

Lexicographically order the items

DIFFERENTIATION OF MINING
 ALGORITHMS

Differ in how they grow the lexicographic or enumeration tree of frequent itemsets

- trade-offs between storage, disk access costs, comp. efficiency
- breadth first
- depth first

Breadth-first

- more relevant for disk-resident databases
- all nodes at a single level of the tree can be extended during one counting pass on the transaction database

Depth-first

- better ability to explore the tree deeply and discover long frequent patterns early
- useful to gain computational efficiency in maximal pattern mining

ENUMERATION TREE OF FREQUENT ITEMSETS

GENERIC ENUMERATION-TREE GROWTH ALGORITHM

Unspecified growth strategy and counting method

Algorithm GenericEnumerationTree(Transactions: \mathcal{T}, Minimum Support: minsup)
 begin

Initialize enumeration tree $\mathcal{E} \mathcal{T}$ to single Null node; while any node in $\mathcal{E} \mathcal{T}$ has not been examined do begin

Select one of more unexamined nodes \mathcal{P} from $\mathcal{E} \mathcal{T}$ for examination;
Generate candidates extensions $C(P)$ of each node $P \in \mathcal{P}$;
Determine frequent extensions $F(P) \subseteq C(P)$ for each $P \in \mathcal{P}$ with support counting;
Extend each node $P \in \mathcal{P}$ in $\mathcal{E} \mathcal{T}$ with its frequent extensions in $F(P)$;
end
return enumeration tree $\mathcal{E} \mathcal{T}$;
end

AlGORITHMS FOR TREE GROWTH

Many algorithms

- projection-based
- recursive
- hash-table assisted
- optimized counting at deeper level nodes
- pointer-less, array-based trees

We shall look at the Apriori algorithm in more detail

- many more are in the text book

The Downward Closure Property

The downward closure property of frequent patterns

- any subset of a frequent itemset must be frequent
- if \{beer, diaper, nuts\} is frequent, so is \{beer, diaper\}
- i.e., every transaction having \{beer, diaper, nuts\} also contains \{beer, diaper\}
- this can be useful to prune unnecessary searches
- this leads to the Apriori pruning principle

Apriori pruning principle:

- if there is any itemset which is infrequent, then its superset should not be generated/tested

ApRIORI ALGORITHM

Pioneered by

- Agrawal \& Srikant @VLDB'94, Mannila, et al. @ KDD' 94

Method:

- initially, scan DB once to get frequent 1-itemsets
- generate length $(k+1)$ candidate itemsets from length k frequent itemsets
- test the candidates against DB
- terminate when no frequent or candidate set can be generated

APRIORI ALGORITHM - EXAMPLE

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

L_{1}| | Itemset |
| :---: | :---: |
| | sup |
| | $\{\mathrm{A}\}$ |
| | $\{\mathrm{B}\}$ |
| | $3 \mathrm{C}\}$ |
| | $\{\mathrm{E}\}$ |

L_{2}			C_{2}	\{A, B\}	sup	$\stackrel{C_{2}}{2^{\text {nd }} \text { scan }}$	Itemset
	Itemset	sup		$\{\mathrm{A}, \mathrm{B}\}$	1		\{ A, B
	\{A, C $\}$	2		$\{\mathrm{A}, \mathrm{C}\}$	2		$\{\mathrm{A}, \mathrm{C}\}$
	\{B, C $\}$	2		$\{\mathrm{A}, \mathrm{E}\}$	2		$\{\mathrm{A}, \mathrm{E}\}$
	$\{\mathrm{B}, \mathrm{E}\}$	3		\{B, C $\}$	3		$\{B, C\}$
	\{C, E\}	2		$\{\mathrm{C}, \mathrm{E}\}$	2		\{B, E\}
V							\{C, E\}

Apriori Algorithm - Pseudo Code

C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k++$) do begin
$C_{k+1}=$ candidates generated from $L_{k i}$ for each transaction t in database do
increment the count of all candidates in C_{k+1} that are contained in t
$L_{k+1}=$ candidates in C_{k+1} with min_support end
return $\cup_{k} L_{k i}$

IMPLEMENTATION OF APRIORI

How to generate candidates?

- Step 1: self-joining L_{k}
- Step 2: pruning

Example of Candidate-generation

- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd
- acde from acd and ace
- Pruning:
- acde is removed because ade is not in L_{3}
- $C_{4}=\{a b c d\}$
- can also limited the depth, k, of the tree for efficiency

AlTERNATIVE MODELS: INTERESTING PATTERNS

Why Use Alternative Algorithms?

Frequent itemset generation has found widespread popularity and acceptance

- simple
- downward closure property very helpful for pruning

However,

- patterns found are NOT always significant from an applicationspecific perspective.
- raw frequencies of itemsets do not always correspond to the most interesting patterns

EXAMPLE OF SHORTCOMINGS

Database in which all the transactions contain the item Milk

- therefore, the item Milk can be appended to any set of items, without changing its frequency.
- however, this does not mean that Milk is truly associated with any set of items

In this case for any set of items X, the association rule $X \Rightarrow$ \{Milk\} has 100\% confidence

- however, it would not make sense for the supermarket merchant to assume that the basket of items X is discriminatively indicative of Milk
- this is the limitation of the traditional support-confidence model
- for example, "Buy walnuts \Rightarrow buy milk $[1 \%, 80 \%]$ " is misleading if 85% of customers buy milk

INTERESTINGNESS-BASED MODELS

It is possible to quantify the affinity of sets of items in ways that are statistically more robust than the support-confidence framework

However, the major computational problem is that the downward closure property is generally not satisfied

This makes algorithmic development rather difficult on the exponentially large search space of patterns

In some cases, the measure is defined only for the special case of 2 -itemsets

CORRELATION

Pearson's coefficient:

$$
\rho=\frac{E[X \cdot Y]-E[X] \cdot E[Y]}{\sigma(X) \cdot \sigma(Y)}
$$

Adapted to the notion of relative support:

$$
\rho_{i j}=\frac{\sup (\{i, j\})-\sup (i) \cdot \sup (j)}{\sqrt{\sup (i) \cdot \sup (j) \cdot(1-\sup (i)) \cdot(1-\sup (j))}}
$$

Why does it better with regards to the milk example just quoted?

x2 MEASURE

For a set of k binary random variables (items), denoted by X, there are 2^{k}-possible states representing presence or absence of different items of X in the transaction

For example, for $k=2$ items \{Bread, Butter

- there are 2^{2} states
- \{Bread,Butter\}, \{Bread, ᄀButter\}, \{ BBread,Butter\}, \{ DBread, DButter\}
- their expected fractional presences $=$ as the product of the supports of the states (presence or absence) of the individual items
x2 compares these expected states with the observed:

$$
\chi^{2}(X)=\sum_{i=1}^{2^{|X|}} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

x2 MEASURE - EXAMPLE

When $X=\{$ Bread,Butter $\}$

- perform the summation over the $2^{2}=4$ states corresponding to \{Bread,Butter\}, \{Bread, BButter\}, \{ BBread,Butter\}, \{ BBread, BButter\}.
- a value that is close to 0 indicates statistical independence among the items \rightarrow no relation in behavior
- larger values of this quantity indicate greater dependence between the variables \rightarrow there is a relation in behavior

However,

- large $\chi 2$ values do not reveal whether the dependence between items is positive or negative
- this is because the $\chi 2$ test measures dependence between variables, rather than the nature of the correlation between the specific states of these variables
- can look at the $\chi 2$ table to see for what of the states O is different from E

x2 MEASURE - IMPLEMENTATION

The $\chi 2$-test satisfies the upward closure property

- this enables an efficient algorithm discovering interesting k patterns
- however, the computational complexity increases exponentially with $|X|$

OTHER INTERESTINGNESS METRICS

See text book

- cosine coefficient
- interest ratio
- Jaccard coefficient
- collective strength

Slide Credits

Content of some slides courtesy of

- Jiawei Han, Micheline Kamber, and Jian Pei, UIUC
- Bing Liu, UIC

