

Lecture Topic Projects
1 Intro, schedule, and logistics
2 Data Science components and tasks
3 Data types Project #1 out
4 Introduction to R, statistics foundations
5 Introduction to D3, visual analytics
6 Data preparation and reduction
7 Data preparation and reduction Project #1 due
8 Similarity and distances Project #2 out
9 Similarity and distances

10 Cluster analysis
11 Cluster analysis
12 Pattern mining Project #2 due
13 Pattern mining
14 Outlier analysis
15 Outlier analysis Final Project proposal due
16 Classifiers
17 Midterm
18 Classifiers
19 Optimization and model fitting
20 Optimization and model fitting
21 Causal modeling
22 Streaming data Final Project preliminary report due
23 Text data
24 Time series data
25 Graph data
26 Scalability and data engineering
27 Data journalism
 Final project presentation Final Project slides and final report due

Frequent pattern:

 a pattern (set of items) that occurs frequently in a data set

 called frequent itemsets (Agrawal et al. (1993)

Motivation: find inherent regularities in data

 what products were often purchased together?

 the classic example: beer and diapers?

 what are the subsequent purchases after buying a PC?

 what kinds of DNA are sensitive to this new drug?

 can we automatically classify web documents?

Applications

 basket data analysis, cross-marketing, catalog design, sales campaign

analysis, Web log (click stream) analysis, DNA sequence analysis

Market basket transactions:
 t1: {beer, nuts, diaper}

 t2: {beer, coffee, diaper}

 … …

 tn: {nuts, coffee, diaper., eggs, milk}

Concepts:
 an item: an item/article in a basket

 I: the set of all items sold in the store

 A transaction: items purchased in a basket; it may have a TID
(transaction ID)

 A transactional dataset: A set of transactions

4

Frequent pattern:

 an intrinsic and important property of datasets

Foundation for many essential data mining tasks

 association, correlation, and causality analysis

 sequential, structural (e.g., sub-graph) patterns

 pattern analysis in spatiotemporal, multimedia, time-series, and

stream data

 classification: discriminative, frequent pattern analysis

 cluster analysis: frequent pattern-based clustering

 data warehousing

 semantic data compression

 other broad applications

itemset: a set of one or more items
 X = {milk, bread, cereal} is an itemset

k-itemset: X = {x1, …, xk}
 {milk, bread, cereal} is a 3-itemset

(absolute) support, or, support count of
X: frequency or occurrence of an
itemset X

(relative) support, s, is the fraction of
transactions that contains X (i.e., the
probability that a transaction contains
X)

an itemset X is frequent if X’s support is
no less than a minsup threshold

Customer

buys diaper

Customer

buys both

Customer

buys beer

Nuts, Eggs, Milk 40

Nuts, Coffee, Diaper, Eggs, Milk 50

Beer, Diaper, Eggs 30

Beer, Coffee, Diaper 20

Beer, Nuts, Diaper 10

Items bought Tid

Find all the rules X  Y with minimum
support and confidence

 support, s, probability that a
transaction contains X  Y

 confidence, c, conditional
probability that a transaction having
X also contains Y

Example:
 let minsup=50%, minconf=50%

 FP: Beer: s=3/5, Nuts: s=3/5, Diaper:
s=4/5, Eggs: s=3/5, {Beer, Diaper}:
s=3/5

Association rules: (many more!)

 Beer  Diaper
 (s(B)=60%, c(D|B)=100%)
 Diaper  Beer
 (s(D)=80%, c(B|D=75%)

Customer

buys diaper

Customer

buys both

Customer

buys beer

Nuts, Eggs, Milk 40

Nuts, Coffee, Diaper, Eggs, Milk 50

Beer, Diaper, Eggs 30

Beer, Coffee, Diaper 20

Beer, Nuts, Diaper 10

Items bought Tid

Realistic databases have a large number of patterns

 can be expensive to mine

 hence there are many mining algorithms

 they use different strategies and data structures

 their resulting sets of rules are all the same.

Given a transaction data set T, and a minimum support and a

minimum confidence, the set of association rules existing in T

is uniquely determined

 any algorithm should find the same set of rules although their

computational efficiencies and memory requirements may be

different

Lexicographically order the items

Differ in how they grow the lexicographic or enumeration tree of
frequent itemsets

 trade-offs between storage, disk access costs, comp. efficiency

 breadth first

 depth first

Breadth-first
 more relevant for disk-resident databases

 all nodes at a single level of the tree can be extended during one
counting pass on the transaction database

Depth-first
 better ability to explore the tree deeply and discover long frequent

patterns early

 useful to gain computational efficiency in maximal pattern mining

Unspecified growth strategy and counting method

Many algorithms

 projection-based

 recursive

 hash-table assisted

 optimized counting at deeper level nodes

 pointer-less, array-based trees

We shall look at the Apriori algorithm in more detail

 many more are in the text book

The downward closure property of frequent patterns

 any subset of a frequent itemset must be frequent

 if {beer, diaper, nuts} is frequent, so is {beer, diaper}

 i.e., every transaction having {beer, diaper, nuts} also contains

{beer, diaper}

 this can be useful to prune unnecessary searches

 this leads to the Apriori pruning principle

Apriori pruning principle:

 if there is any itemset which is infrequent, then its superset should

not be generated/tested

Pioneered by

 Agrawal & Srikant @VLDB’94, Mannila, et al. @ KDD’ 94

Method:

 initially, scan DB once to get frequent 1-itemsets

 generate length (k+1) candidate itemsets from length k frequent

itemsets

 test the candidates against DB

 terminate when no frequent or candidate set can be generated

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=; k++) do begin

 Ck+1 = candidates generated from Lk;

 for each transaction t in database do

 increment the count of all candidates in Ck+1 that are

contained in t

 Lk+1 = candidates in Ck+1 with min_support

 end

return k Lk;

How to generate candidates?

 Step 1: self-joining Lk

 Step 2: pruning

Example of Candidate-generation

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3*L3
• abcd from abc and abd

• acde from acd and ace

 Pruning:
• acde is removed because ade is not in L3

 C4 = {abcd}

 can also limited the depth, k, of the tree for efficiency

Frequent itemset generation has found widespread popularity

and acceptance

 simple

 downward closure property very helpful for pruning

However,

 patterns found are NOT always significant from an application-

specific perspective.

 raw frequencies of itemsets do not always correspond to the most

interesting patterns

Database in which all the transactions contain the item Milk
 therefore, the item Milk can be appended to any set of items,

without changing its frequency.

 however, this does not mean that Milk is truly associated with any
set of items

In this case for any set of items X, the association rule X ⇒
{Milk} has 100% confidence

 however, it would not make sense for the supermarket merchant
to assume that the basket of items X is discriminatively indicative
of Milk

 this is the limitation of the traditional support-confidence model

 for example, “Buy walnuts  buy milk [1%, 80%]” is misleading if
85% of customers buy milk

It is possible to quantify the affinity of sets of items in ways

that are statistically more robust than the support-confidence

framework

However, the major computational problem is that the

downward closure property is generally not satisfied

This makes algorithmic development rather difficult on the

exponentially large search space of patterns

In some cases, the measure is defined only for the special

case of 2-itemsets

Pearson’s coefficient:

Adapted to the notion of relative support:

Why does it better with regards to the milk example just

quoted?

χ

For a set of k binary random variables (items), denoted by X,

there are 2k-possible states representing presence or absence

of different items of X in the transaction

For example, for k = 2 items {Bread, Butter

 there are 22 states

 {Bread,Butter}, {Bread,￢Butter}, {￢Bread,Butter}, {￢Bread, ￢Butter}

 their expected fractional presences = as the product of the

supports of the states (presence or absence) of the individual items

χ2 compares these expected

states with the observed:

χ

When X = {Bread,Butter}
 perform the summation over the 22 = 4 states corresponding to

{Bread,Butter}, {Bread,￢Butter}, {￢Bread,Butter}, {￢Bread, ￢Butter}.

 a value that is close to 0 indicates statistical independence among the
items  no relation in behavior

 larger values of this quantity indicate greater dependence between the
variables  there is a relation in behavior

However,
 large χ2 values do not reveal whether the dependence between items is

positive or negative

 this is because the χ2 test measures dependence between variables,
rather than the nature of the correlation between the specific states of
these variables

 can look at the χ2 table to see for what of the states O is different from
E

χ

The χ2-test satisfies the upward closure property

 this enables an efficient algorithm discovering interesting k-

patterns

 however, the computational complexity increases exponentially

with |X|

See text book

 cosine coefficient

 interest ratio

 Jaccard coefficient

 collective strength

Content of some slides courtesy of

 Jiawei Han, Micheline Kamber, and Jian Pei, UIUC

 Bing Liu, UIC

