


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Data Science components and tasks   
3 Data types Project #1 out  
4 Introduction to R, statistics foundations   
5 Introduction to D3, visual analytics   
6 Data preparation and reduction    
7 Data preparation and reduction  Project #1 due 
8 Similarity and distances Project #2 out 
9 Similarity and distances   

10 Cluster analysis   
11 Cluster analysis   
12 Pattern mining  Project #2 due 
13 Pattern mining   
14 Outlier analysis   
15 Outlier analysis Final Project proposal due 
16 Classifiers   
17 Midterm   
18 Classifiers   
19 Optimization and model fitting   
20 Optimization and model fitting   
21 Causal modeling   
22 Streaming data Final Project preliminary report due 
23 Text data   
24 Time series data   
25 Graph data   
26 Scalability and data engineering   
27 Data journalism   
  Final project presentation  Final Project slides and final report due 



Frequent pattern: 

 a pattern (set of items) that occurs frequently in a data set  

 called frequent itemsets (Agrawal et al. (1993) 

 

Motivation: find inherent regularities in data 

 what products were often purchased together? 

 the classic example: beer and diapers? 

 what are the subsequent purchases after buying a PC? 

 what kinds of DNA are sensitive to this new drug? 

 can we automatically classify web documents? 

 

Applications 

 basket data analysis, cross-marketing, catalog design, sales campaign 

analysis, Web log (click stream) analysis, DNA sequence analysis 

 



Market basket transactions: 
 t1: {beer, nuts, diaper} 

 t2: {beer, coffee, diaper} 

 …   … 

 tn: {nuts, coffee, diaper., eggs, milk} 

 

Concepts: 
 an item:  an item/article in a basket 

 I: the set of all items sold in the store 

 A transaction: items purchased in a basket; it may have a TID 
(transaction ID) 

 A transactional dataset: A set of transactions 
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Frequent pattern: 

 an intrinsic and important property of datasets  

 

Foundation for many essential data mining tasks 

 association, correlation, and causality analysis 

 sequential, structural (e.g., sub-graph) patterns 

 pattern analysis in spatiotemporal, multimedia, time-series, and 

stream data  

 classification: discriminative, frequent pattern analysis 

 cluster analysis: frequent pattern-based clustering 

 data warehousing 

 semantic data compression 

 other broad applications 

 



itemset: a set of one or more items 
 X = {milk, bread, cereal} is an itemset 

k-itemset: X = {x1, …, xk} 
 {milk, bread, cereal} is a 3-itemset 

(absolute) support, or, support count of 
X: frequency or occurrence of an 
itemset X 

 

(relative) support, s, is the fraction of 
transactions that contains X (i.e., the 
probability that a transaction contains 
X) 

 

an itemset X is frequent if X’s support is 
no less than a minsup threshold 

 

Customer 

buys diaper 

Customer 

buys both 

Customer 

buys beer 

Nuts, Eggs, Milk 40 

Nuts, Coffee, Diaper, Eggs, Milk 50 

Beer, Diaper, Eggs 30 

Beer, Coffee, Diaper 20 

Beer, Nuts, Diaper 10 

Items bought Tid 



Find all the rules X  Y with minimum 
support and confidence 

 support, s, probability that a 
transaction contains X  Y 

 confidence, c, conditional 
probability that a transaction having 
X also contains Y 

 

Example:  
 let minsup=50%, minconf=50% 

 FP: Beer: s=3/5, Nuts: s=3/5, Diaper: 
s=4/5, Eggs: s=3/5, {Beer, Diaper}: 
s=3/5 

 
Association rules: (many more!) 

 Beer  Diaper   
          (s(B)=60%, c(D|B)=100%) 
 Diaper  Beer   
          (s(D)=80%, c(B|D=75%) 

Customer 

buys diaper 

Customer 

buys both 

Customer 

buys beer 

Nuts, Eggs, Milk 40 

Nuts, Coffee, Diaper, Eggs, Milk 50 

Beer, Diaper, Eggs 30 

Beer, Coffee, Diaper 20 

Beer, Nuts, Diaper 10 

Items bought Tid 



Realistic databases have a large number of patterns 

 can be expensive to mine 

 hence there are many mining algorithms 

 they use different strategies and data structures 

 their resulting sets of rules are all the same.  

 

Given a transaction data set T, and a minimum support and a 

minimum confidence, the set of association rules existing in T 

is uniquely determined  

 any algorithm should find the same set of rules although their 

computational efficiencies and memory requirements may be 

different  

 



Lexicographically order the items   



Differ in how they grow the lexicographic or enumeration tree of 
frequent itemsets 

 trade-offs between storage, disk access costs, comp. efficiency 

 breadth first    

 depth first 

 

Breadth-first 
 more relevant for disk-resident databases 

 all nodes at a single level of the tree can be extended during one 
counting pass on the transaction database 

 

Depth-first  
 better ability to explore the tree deeply and discover long frequent 

patterns early 

 useful to gain computational efficiency in maximal pattern mining 





Unspecified growth strategy and counting method 



Many algorithms 

 projection-based 

 recursive 

 hash-table assisted 

 optimized counting at deeper level nodes  

 pointer-less, array-based trees 

 

We shall look at the Apriori algorithm in more detail 

 many more are in the text book 

 



The downward closure property of frequent patterns 

 any subset of a frequent itemset must be frequent 

 if {beer, diaper, nuts} is frequent, so is {beer, diaper} 

 i.e., every transaction having {beer, diaper, nuts} also contains 

{beer, diaper}  

 this can be useful to prune unnecessary searches 

 this leads to the Apriori pruning principle 

 

Apriori pruning principle: 

 if there is any itemset which is infrequent, then its superset should 

not be generated/tested  

 



Pioneered by 

 Agrawal & Srikant @VLDB’94, Mannila, et al. @ KDD’ 94 

 

Method:  

 initially, scan DB once to get frequent 1-itemsets 

 generate length (k+1) candidate itemsets from length k frequent 

itemsets 

 test the candidates against DB 

 terminate when no frequent or candidate set can be generated 

 





Ck: Candidate itemset of size k 

Lk : frequent itemset of size k 

 

L1 = {frequent items}; 

for (k = 1; Lk !=; k++) do begin 

    Ck+1 = candidates generated from Lk; 

    for each transaction t in database do 

  increment the count of all candidates in Ck+1 that are 

contained in t 

    Lk+1  = candidates in Ck+1 with min_support 

    end 

return k Lk; 



How to generate candidates? 

 Step 1: self-joining Lk 

 Step 2: pruning 

 

Example of Candidate-generation 

 L3={abc, abd, acd, ace, bcd} 

 Self-joining: L3*L3 
• abcd from abc and abd 

• acde from acd and ace 

 Pruning: 
• acde is removed because ade is not in L3 

 C4 = {abcd} 

 can also limited the depth, k,  of the tree for efficiency  
 





Frequent itemset generation has found widespread popularity 

and acceptance  

 simple 

 downward closure property very helpful for pruning 

 

However, 

 patterns found are NOT always significant from an application-

specific perspective. 

 raw frequencies of itemsets do not always correspond to the most 

interesting patterns 



Database in which all the transactions contain the item Milk 
 therefore, the item Milk can be appended to any set of items, 

without changing its frequency.  

 however, this does not mean that Milk is truly associated with any 
set of items 

 

In this case for any set of items X, the association rule X ⇒ 
{Milk} has 100% confidence 

 however, it would not make sense for the supermarket merchant 
to assume that the basket of items X is discriminatively indicative 
of Milk 

 this is the limitation of the traditional support-confidence model 

 

 for example, “Buy walnuts   buy milk [1%, 80%]”  is misleading if 
85% of customers buy milk 

 



It is possible to quantify the affinity of sets of items in ways 

that are statistically more robust than the support-confidence 

framework 

 

However, the major computational problem is that the 

downward closure property is generally not satisfied 

 

This makes algorithmic development rather difficult on the 

exponentially large search space of patterns 

 

In some cases, the measure is defined only for the special 

case of 2-itemsets 

 



Pearson’s coefficient: 

 

 

 

Adapted to the notion of relative support: 

 

 

 

Why does it better with regards to the milk example just 

quoted? 

 



χ

For a set of k binary random variables (items), denoted by X, 

there are 2k-possible states representing presence or absence 

of different items of X in the transaction 

 

For example, for k = 2 items {Bread, Butter 

 there are  22 states  

 {Bread,Butter}, {Bread,￢Butter}, {￢Bread,Butter}, {￢Bread, ￢Butter} 

 their expected fractional presences = as the product of the 

supports of the states (presence or absence) of the individual items 

 

χ2  compares these expected                                                           

states with the observed: 



χ

When X = {Bread,Butter} 
 perform the summation over the 22 = 4 states corresponding to 

{Bread,Butter}, {Bread,￢Butter}, {￢Bread,Butter}, {￢Bread, ￢Butter}. 

 a value that is close to 0 indicates statistical independence among the 
items  no relation in behavior 

 larger values of this quantity indicate greater dependence between the 
variables  there is a relation in behavior 

 

However, 
 large χ2 values do not reveal whether the dependence between items is 

positive or negative 

 this is because the χ2 test measures dependence between variables, 
rather than the nature of the correlation between the specific states of 
these variables 

 can look at the χ2 table to see for what of the states O is different from 
E 



χ

The χ2-test satisfies the upward closure property  

 this enables an efficient algorithm discovering interesting k-

patterns 

 however, the computational complexity increases exponentially 

with |X| 



See text book 

 cosine coefficient 

 interest ratio 

 Jaccard coefficient 

 collective strength 
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