


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Data Science components and tasks   
3 Data types Project #1 out  
4 Introduction to R, statistics foundations   
5 Introduction to D3, visual analytics   
6 Data preparation and reduction    
7 Data preparation and reduction  Project #1 due 
8 Similarity and distances Project #2 out 
9 Similarity and distances   

10 Cluster analysis   
11 Cluster analysis   
12 Pattern mining  Project #2 due 
13 Pattern mining   
14 Outlier analysis   
15 Outlier analysis Final Project proposal due 
16 Classifiers   
17 Midterm   
18 Classifiers   
19 Optimization and model fitting   
20 Optimization and model fitting   
21 Causal modeling   
22 Streaming data Final Project preliminary report due 
23 Text data   
24 Time series data   
25 Graph data   
26 Scalability and data engineering   
27 Data journalism   
  Final project presentation  Final Project slides and final report due 



Frequent pattern: 

 a pattern (set of items) that occurs frequently in a data set  

 called frequent itemsets (Agrawal et al. (1993) 

 

Motivation: find inherent regularities in data 

 what products were often purchased together? 

 the classic example: beer and diapers? 

 what are the subsequent purchases after buying a PC? 

 what kinds of DNA are sensitive to this new drug? 

 can we automatically classify web documents? 

 

Applications 

 basket data analysis, cross-marketing, catalog design, sales campaign 

analysis, Web log (click stream) analysis, DNA sequence analysis 

 



Market basket transactions: 
 t1: {beer, nuts, diaper} 

 t2: {beer, coffee, diaper} 

 …   … 

 tn: {nuts, coffee, diaper., eggs, milk} 

 

Concepts: 
 an item:  an item/article in a basket 

 I: the set of all items sold in the store 

 A transaction: items purchased in a basket; it may have a TID 
(transaction ID) 

 A transactional dataset: A set of transactions 
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Frequent pattern: 

 an intrinsic and important property of datasets  

 

Foundation for many essential data mining tasks 

 association, correlation, and causality analysis 

 sequential, structural (e.g., sub-graph) patterns 

 pattern analysis in spatiotemporal, multimedia, time-series, and 

stream data  

 classification: discriminative, frequent pattern analysis 

 cluster analysis: frequent pattern-based clustering 

 data warehousing 

 semantic data compression 

 other broad applications 

 



itemset: a set of one or more items 
 X = {milk, bread, cereal} is an itemset 

k-itemset: X = {x1, …, xk} 
 {milk, bread, cereal} is a 3-itemset 

(absolute) support, or, support count of 
X: frequency or occurrence of an 
itemset X 

 

(relative) support, s, is the fraction of 
transactions that contains X (i.e., the 
probability that a transaction contains 
X) 

 

an itemset X is frequent if X’s support is 
no less than a minsup threshold 

 

Customer 

buys diaper 

Customer 

buys both 

Customer 

buys beer 

Nuts, Eggs, Milk 40 

Nuts, Coffee, Diaper, Eggs, Milk 50 

Beer, Diaper, Eggs 30 

Beer, Coffee, Diaper 20 

Beer, Nuts, Diaper 10 

Items bought Tid 



Find all the rules X  Y with minimum 
support and confidence 

 support, s, probability that a 
transaction contains X  Y 

 confidence, c, conditional 
probability that a transaction having 
X also contains Y 

 

Example:  
 let minsup=50%, minconf=50% 

 FP: Beer: s=3/5, Nuts: s=3/5, Diaper: 
s=4/5, Eggs: s=3/5, {Beer, Diaper}: 
s=3/5 

 
Association rules: (many more!) 

 Beer  Diaper   
          (s(B)=60%, c(D|B)=100%) 
 Diaper  Beer   
          (s(D)=80%, c(B|D=75%) 

Customer 

buys diaper 

Customer 

buys both 

Customer 

buys beer 

Nuts, Eggs, Milk 40 

Nuts, Coffee, Diaper, Eggs, Milk 50 

Beer, Diaper, Eggs 30 

Beer, Coffee, Diaper 20 

Beer, Nuts, Diaper 10 

Items bought Tid 



Realistic databases have a large number of patterns 

 can be expensive to mine 

 hence there are many mining algorithms 

 they use different strategies and data structures 

 their resulting sets of rules are all the same.  

 

Given a transaction data set T, and a minimum support and a 

minimum confidence, the set of association rules existing in T 

is uniquely determined  

 any algorithm should find the same set of rules although their 

computational efficiencies and memory requirements may be 

different  

 



Lexicographically order the items   



Differ in how they grow the lexicographic or enumeration tree of 
frequent itemsets 

 trade-offs between storage, disk access costs, comp. efficiency 

 breadth first    

 depth first 

 

Breadth-first 
 more relevant for disk-resident databases 

 all nodes at a single level of the tree can be extended during one 
counting pass on the transaction database 

 

Depth-first  
 better ability to explore the tree deeply and discover long frequent 

patterns early 

 useful to gain computational efficiency in maximal pattern mining 





Unspecified growth strategy and counting method 



Many algorithms 

 projection-based 

 recursive 

 hash-table assisted 

 optimized counting at deeper level nodes  

 pointer-less, array-based trees 

 

We shall look at the Apriori algorithm in more detail 

 many more are in the text book 

 



The downward closure property of frequent patterns 

 any subset of a frequent itemset must be frequent 

 if {beer, diaper, nuts} is frequent, so is {beer, diaper} 

 i.e., every transaction having {beer, diaper, nuts} also contains 

{beer, diaper}  

 this can be useful to prune unnecessary searches 

 this leads to the Apriori pruning principle 

 

Apriori pruning principle: 

 if there is any itemset which is infrequent, then its superset should 

not be generated/tested  

 



Pioneered by 

 Agrawal & Srikant @VLDB’94, Mannila, et al. @ KDD’ 94 

 

Method:  

 initially, scan DB once to get frequent 1-itemsets 

 generate length (k+1) candidate itemsets from length k frequent 

itemsets 

 test the candidates against DB 

 terminate when no frequent or candidate set can be generated 

 





Ck: Candidate itemset of size k 

Lk : frequent itemset of size k 

 

L1 = {frequent items}; 

for (k = 1; Lk !=; k++) do begin 

    Ck+1 = candidates generated from Lk; 

    for each transaction t in database do 

  increment the count of all candidates in Ck+1 that are 

contained in t 

    Lk+1  = candidates in Ck+1 with min_support 

    end 

return k Lk; 



How to generate candidates? 

 Step 1: self-joining Lk 

 Step 2: pruning 

 

Example of Candidate-generation 

 L3={abc, abd, acd, ace, bcd} 

 Self-joining: L3*L3 
• abcd from abc and abd 

• acde from acd and ace 

 Pruning: 
• acde is removed because ade is not in L3 

 C4 = {abcd} 

 can also limited the depth, k,  of the tree for efficiency  
 





Frequent itemset generation has found widespread popularity 

and acceptance  

 simple 

 downward closure property very helpful for pruning 

 

However, 

 patterns found are NOT always significant from an application-

specific perspective. 

 raw frequencies of itemsets do not always correspond to the most 

interesting patterns 



Database in which all the transactions contain the item Milk 
 therefore, the item Milk can be appended to any set of items, 

without changing its frequency.  

 however, this does not mean that Milk is truly associated with any 
set of items 

 

In this case for any set of items X, the association rule X ⇒ 
{Milk} has 100% confidence 

 however, it would not make sense for the supermarket merchant 
to assume that the basket of items X is discriminatively indicative 
of Milk 

 this is the limitation of the traditional support-confidence model 

 

 for example, “Buy walnuts   buy milk [1%, 80%]”  is misleading if 
85% of customers buy milk 

 



It is possible to quantify the affinity of sets of items in ways 

that are statistically more robust than the support-confidence 

framework 

 

However, the major computational problem is that the 

downward closure property is generally not satisfied 

 

This makes algorithmic development rather difficult on the 

exponentially large search space of patterns 

 

In some cases, the measure is defined only for the special 

case of 2-itemsets 

 



Pearson’s coefficient: 

 

 

 

Adapted to the notion of relative support: 

 

 

 

Why does it better with regards to the milk example just 

quoted? 

 



χ

For a set of k binary random variables (items), denoted by X, 

there are 2k-possible states representing presence or absence 

of different items of X in the transaction 

 

For example, for k = 2 items {Bread, Butter 

 there are  22 states  

 {Bread,Butter}, {Bread,￢Butter}, {￢Bread,Butter}, {￢Bread, ￢Butter} 

 their expected fractional presences = as the product of the 

supports of the states (presence or absence) of the individual items 

 

χ2  compares these expected                                                           

states with the observed: 



χ

When X = {Bread,Butter} 
 perform the summation over the 22 = 4 states corresponding to 

{Bread,Butter}, {Bread,￢Butter}, {￢Bread,Butter}, {￢Bread, ￢Butter}. 

 a value that is close to 0 indicates statistical independence among the 
items  no relation in behavior 

 larger values of this quantity indicate greater dependence between the 
variables  there is a relation in behavior 

 

However, 
 large χ2 values do not reveal whether the dependence between items is 

positive or negative 

 this is because the χ2 test measures dependence between variables, 
rather than the nature of the correlation between the specific states of 
these variables 

 can look at the χ2 table to see for what of the states O is different from 
E 



χ

The χ2-test satisfies the upward closure property  

 this enables an efficient algorithm discovering interesting k-

patterns 

 however, the computational complexity increases exponentially 

with |X| 



See text book 

 cosine coefficient 

 interest ratio 

 Jaccard coefficient 

 collective strength 



Content of some slides courtesy of 

 Jiawei Han, Micheline Kamber, and Jian Pei, UIUC 

 Bing Liu, UIC 

 

 


