


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Data Science components and tasks   
3 Data types Project #1 out  
4 Introduction to R, statistics foundations   
5 Introduction to D3, visual analytics   
6 Data preparation and reduction    
7 Data preparation and reduction  Project #1 due 
8 Similarity and distances Project #2 out 
9 Similarity and distances   

10 Cluster analysis   
11 Cluster analysis   
12 Pattern mining  Project #2 due 
13 Pattern mining   
14 Outlier analysis   
15 Outlier analysis Final Project proposal due 
16 Classifiers   
17 Midterm   
18 Classifiers   
19 Optimization and model fitting   
20 Optimization and model fitting   
21 Causal modeling   
22 Streaming data Final Project preliminary report due 
23 Text data   
24 Time series data   
25 Graph data   
26 Scalability and data engineering   
27 Data journalism   
  Final project presentation  Final Project slides and final report due 



Minimize or maximize some criterion 

multi-objective optimization 

single objective, 1D single objective, ND 



 

 

 

 

 

 

 

 

 which of the minima is found depends on the starting point 

 such minima often occur in real applications 
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Assume we can start close to the global minimum 

 

 

 

 

How to determine the minimum? 

 search methods (Dichotomous, Fibonacci, Golden-Section) 

 approximation methods 

• polynomial interpolation 

• Newton method 

 combination of both  

 



Start with the interval (“bracket”) [xL, xU] such that the 

minimum x* lies inside. 

Evaluate f(x) at two point inside the bracket. 

Reduce the bracket. 

Repeat the process 

 

 

Can be applied to any function and                                       

differentiability is not essential.  
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Global convergence of Newton’s method is poor. 

Often fails if the starting point is too far from the minimum 

 

 

 

 

 

 

 

in practice, must be used with a globalization strategy which 

reduces the step length until function decrease is assured 

 



Can be challenging 

 may get stuck in a local minimum  

 can happen in almost any algorithm 

 how to deal with it?  



Finds the global minimum of a function by jumping to 

different sites 

 extent of jumps depend on the time ort process, the cooling 

temperature 



Comes from annealing in metallurgy 

 a technique involving heating and controlled cooling of a material 

to arrange the atoms in optimal patterns to reduce defects 

 



Algorithm SIMULATED-ANNEALING 

Begin 

 temp = INIT-TEMP; 

 place = INIT-PLACEMENT; 

 while (temp > FINAL-TEMP) do 

  while (inner_loop_criterion = FALSE) do 

   new_place = PERTURB(place); 

   ΔC = COST(new_place)  - COST(place); 

   if (ΔC < 0) then 

    place = new_place; 

   else if (RANDOM(0,1) > e-(ΔC/temp)) then 

    place = new_place; 

  temp = SCHEDULE(temp); 

End. 

 

slide by Premchand Akella 



How big N can be? 

 problem sizes can vary from a handful of parameters 

to many thousands  

 



Assume we have a large linear system of equations 

 

 

 

 

 

 

 write in matrix form as Ax=b 

 reality is that the equations are inconsistent due to noise 

 so simple matrix inversion will not work well 
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Given a starting location, x0, examine df/dx  

 move into the downhill direction  

 generate a new estimate, x1 = x0 + δx 



Gradient Descent – N > 1 

Quadratic form of a vector: 

 

• this equation is minimized when Ax=b 

• this occurs when f’(x)=0 

• thus, minimizing the quadratic form will solve the matrix problem 
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Graph plot Contour plot Gradient plot 



Steepest Descent 

Start at an arbitrary point and slide down to the bottom of the 
parabola 

• in practice this will be a hyper-parabola since x, b are high-dimensional 

• choose the direction in which f decreases most quickly 

 

 

                    where x(i) is the current (predicted) solution 
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Figures from J. Shewchuk, UC Berkeley 



Steepest Descent 

Start at some initial guess x(0) 

• this will likely not find the solution 

• need to follow f’(x(0)) some ways and                                                              
then change directions 

• question is where do we change directions 

 

Some basics: 

• error: how far are we away from the solution – unknown 

 

 

• residual: how far are we away from the correct value of b – computable 
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Steepest Descent 

Finding the right place to turn directions is called line search 

 

 

To find a we can use the following requirements: 

• the new direction of r must be orthogonal to the                                 
previous: 

 

 

• the residual at x(1) 

 

 

 

• after some math: 

 

 

 

(1) (0) (0)x x ra 

(1) (1)'( )f x r 

(1) (0) 0Tr r 

(0) (0)

(0) (0)

T

T

r r

r Ar
a 



Steepest Descent: Summary 

 

 

 

 

 

 

Shortcoming: 

• sub-optimal since some directions might be taken more than once 

• this can be fixed by the method of Conjugant Gradients 

 

 

 

( ) ( )

( ) ( )

( ) ( )

( 1) ( ) ( )

i i

T

i i

T

i i

i i i

r b Ax

r r

r Ar

x x r

a

a

 



 



portions courtesy of http://www.noesissolutions.com/ 
and University of Ottawa  
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Multi-objective optimization (MOO) is the optimization of 

conflicting objectives 

 



Suppose you need to fly on a long trip: 
Should you choose the cheapest ticket (more connections) or 
shortest flying time (more expensive)? 

 

It is impossible to put a value on time, so these two 
objectives can’t be linked. 

 

Also, the relative importance will vary. 
 there may be a business emergency you need to go fix quickly. 

 or, maybe you are on a very tight budget. 



A MOO problem with constraints will have many solutions in 

the feasible region. 

 

Even though we may not be able to assign numerical relative 

importance to the multiple objectives, we can still classify 

some possible solutions as better than others. 

 

We will see this in the following example. 



Suppose in our airplane-trip example we find the following 

tickets: 

Ticket Travel Time 

(hrs) 

Ticket 

Price ($) 

A 10 1700 

B 9 2000 

C 8 1800 

D 7.5 2300 

E 6 2200 



If we compare tickets A and B, we can’t say that either is 

superior without knowing the relative importance of Travel 

Time vs. Price. 

However, comparing tickets B and C shows that C is better 

than B in both objectives, so we can say that C “dominates” B. 

So, as long as C is a feasible option, there is no reason we 

would choose B. 
Ticket Travel 

Time (hrs) 

Ticket 

Price ($) 

A 10 1700 

B 9 2000 

C 8 1800 

D 7.5 2300 

E 6 2200 



If we finish the comparisons, we also see that D is dominated 

by E. 

The rest of the options (A, C, E) have a trade-off associated 

with Time vs. Price, so none is clearly superior to the others. 

We call this the “non-dominated” set of solutions because 

none of the solutions are dominated. 

Ticket Travel 

Time (hrs) 

Ticket 

Price ($) 

A 10 1700 

B 9 2000 

C 8 1800 

D 7.5 2300 

E 6 2200 



Usually, solutions of this type form a typical shape, shown in 

the chart below: 

Plane Ticket Options
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Solutions that lie along the line are non-dominated solutions 

 those that lie inside the line are dominated 

 there is always another solution on the line that has at least one 

objective that is better. 



The line is called the Pareto front and solutions on it are 

called Pareto-optimal. 

 

All Pareto-optimal solutions are non-dominated. 

 

Thus, it is important in MOO to find the solutions as close as 

possible to the Pareto front and as far along it as possible. 



For the following feasible region with objectives f1 and f2 

where both f1 and f2 are minimized: 
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One way to imagine finding points on the Pareto front is by 

using a combination of numerical weights for the two 

objectives: 

f1  

f2  

w1  

w2  

w1
*  



If this is done for a 90° span of lines, all the points on the 

Pareto front will be found. 

f1  

f2  



Actually, this is not the procedure that is used in practice, but 

it is a good illustration of the concept. 

 

This procedure would require finding all possible points in 

the feasible region and then using many combinations of 

weights. 

 

For more than two objectives, the complexities and the 

number of combinations make this impractical.   



There are different methods used in practice 

 one is to use a genetic algorithm to enumerate points along the 

Pareto front over several iterations 

 use some method to rank the quality of the trade-offs based on 

the particular application being modeled 

 

Shall discuss one particular genetic algorithm 

 ant colony optimization (ACO) 

 

Ant Colony Optimization  

 studies artificial systems that take inspiration from the behavior of 

real ant colonies  

 used to solve discrete optimization problems 

 



portions courtesy of University of Central Florida  



Almost blind. 

Incapable of achieving complex tasks alone. 

Rely on the phenomena of swarm intelligence for survival. 

Capable of establishing shortest-route paths from their colony to feeding sources and 

back. 

Use stigmergic communication via pheromone trails. 



Follow existing pheromone trails with high probability. 

What emerges is a form of autocatalytic behavior: the more ants follow a trail, the 

more attractive that trail becomes for being followed. 

The process is thus characterized by a positive feedback loop, where the probability of 

a discrete path choice increases with the number of times the same path was chosen 

before. 



Ant Colony Optimization (ACO) 

Naturally Observed Ant Behavior 

All is well in the world of the ant. 



Ant Colony Optimization (ACO) 

Naturally Observed Ant Behavior 

Oh no! An obstacle has blocked our path! 



Ant Colony Optimization (ACO) 

Naturally Observed Ant Behavior 

Where do we go? Everybody, flip a coin. 



Ant Colony Optimization (ACO) 

Naturally Observed Ant Behavior 

Shorter path reinforced. 
time
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Probability of choosing 
value j for state i is  
 
 
 
tij is the pheromone 
currently deposited at ij  

Evaporate 
(using r) and 
update 
pheromone for  
value j in state i  
given average 
score sij for all 
ants that chose 
that state and 
value 



Related to ACO 


