

Lecture Topic Projects
1 Intro, schedule, and logistics
2 Data Science components and tasks
3 Data types Project #1 out
4 Introduction to R, statistics foundations
5 Introduction to D3, visual analytics
6 Data preparation and reduction
7 Data preparation and reduction Project #1 due
8 Similarity and distances Project #2 out
9 Similarity and distances

10 Cluster analysis
11 Cluster analysis
12 Pattern mining Project #2 due
13 Pattern mining
14 Outlier analysis
15 Outlier analysis Final Project proposal due
16 Classifiers
17 Midterm
18 Classifiers
19 Optimization and model fitting
20 Optimization and model fitting
21 Causal modeling
22 Streaming data Final Project preliminary report due
23 Text data
24 Time series data
25 Graph data
26 Scalability and data engineering
27 Data journalism
 Final project presentation Final Project slides and final report due

Minimize or maximize some criterion

multi-objective optimization

single objective, 1D single objective, ND

 which of the minima is found depends on the starting point

 such minima often occur in real applications

x

f(x)

strong

local

minimum

weak

local

minimum strong

global

minimum

strong

local

minimum

feasible region

Assume we can start close to the global minimum

How to determine the minimum?

 search methods (Dichotomous, Fibonacci, Golden-Section)

 approximation methods

• polynomial interpolation

• Newton method

 combination of both

Start with the interval (“bracket”) [xL, xU] such that the

minimum x* lies inside.

Evaluate f(x) at two point inside the bracket.

Reduce the bracket.

Repeat the process

Can be applied to any function and

differentiability is not essential.

xL

xU

xL

xU

xL
xU

Dichotomous

xn

Global convergence of Newton’s method is poor.

Often fails if the starting point is too far from the minimum

in practice, must be used with a globalization strategy which

reduces the step length until function decrease is assured

Can be challenging

 may get stuck in a local minimum

 can happen in almost any algorithm

 how to deal with it?

Finds the global minimum of a function by jumping to

different sites

 extent of jumps depend on the time ort process, the cooling

temperature

Comes from annealing in metallurgy

 a technique involving heating and controlled cooling of a material

to arrange the atoms in optimal patterns to reduce defects

Algorithm SIMULATED-ANNEALING

Begin

 temp = INIT-TEMP;

 place = INIT-PLACEMENT;

 while (temp > FINAL-TEMP) do

 while (inner_loop_criterion = FALSE) do

 new_place = PERTURB(place);

 ΔC = COST(new_place) - COST(place);

 if (ΔC < 0) then

 place = new_place;

 else if (RANDOM(0,1) > e-(ΔC/temp)) then

 place = new_place;

 temp = SCHEDULE(temp);

End.

slide by Premchand Akella

How big N can be?

 problem sizes can vary from a handful of parameters

to many thousands

Assume we have a large linear system of equations

 write in matrix form as Ax=b

 reality is that the equations are inconsistent due to noise

 so simple matrix inversion will not work well

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...

...

...

M M

M M

N N NM M N

a x a x a x b

a x a x a x b

a x a x a x b

Given a starting location, x0, examine df/dx

 move into the downhill direction

 generate a new estimate, x1 = x0 + δx

Gradient Descent – N > 1

Quadratic form of a vector:

• this equation is minimized when Ax=b

• this occurs when f’(x)=0

• thus, minimizing the quadratic form will solve the matrix problem

1
()

2

T Tf x x Ax b x c

Graph plot Contour plot Gradient plot

Steepest Descent

Start at an arbitrary point and slide down to the bottom of the
parabola

• in practice this will be a hyper-parabola since x, b are high-dimensional

• choose the direction in which f decreases most quickly

 where x(i) is the current (predicted) solution

() ()'()i if x b Ax

Figures from J. Shewchuk, UC Berkeley

Steepest Descent

Start at some initial guess x(0)

• this will likely not find the solution

• need to follow f’(x(0)) some ways and
then change directions

• question is where do we change directions

Some basics:

• error: how far are we away from the solution – unknown

• residual: how far are we away from the correct value of b – computable

() ()

() ()

() ()

r

r

r '()

i i

i i

i i

b Ax

Ae

f x

() ()i ie x x

A transforms e into the space of b

Steepest Descent

Finding the right place to turn directions is called line search

To find a we can use the following requirements:

• the new direction of r must be orthogonal to the
previous:

• the residual at x(1)

• after some math:

(1) (0) (0)x x ra

(1) (1)'()f x r

(1) (0) 0Tr r

(0) (0)

(0) (0)

T

T

r r

r Ar
a

Steepest Descent: Summary

Shortcoming:

• sub-optimal since some directions might be taken more than once

• this can be fixed by the method of Conjugant Gradients

() ()

() ()

() ()

(1) () ()

i i

T

i i

T

i i

i i i

r b Ax

r r

r Ar

x x r

a

a

portions courtesy of http://www.noesissolutions.com/
and University of Ottawa

http://www.noesissolutions.com/
http://www.noesissolutions.com/

Multi-objective optimization (MOO) is the optimization of

conflicting objectives

Suppose you need to fly on a long trip:
Should you choose the cheapest ticket (more connections) or
shortest flying time (more expensive)?

It is impossible to put a value on time, so these two
objectives can’t be linked.

Also, the relative importance will vary.
 there may be a business emergency you need to go fix quickly.

 or, maybe you are on a very tight budget.

A MOO problem with constraints will have many solutions in

the feasible region.

Even though we may not be able to assign numerical relative

importance to the multiple objectives, we can still classify

some possible solutions as better than others.

We will see this in the following example.

Suppose in our airplane-trip example we find the following

tickets:

Ticket Travel Time

(hrs)

Ticket

Price ($)

A 10 1700

B 9 2000

C 8 1800

D 7.5 2300

E 6 2200

If we compare tickets A and B, we can’t say that either is

superior without knowing the relative importance of Travel

Time vs. Price.

However, comparing tickets B and C shows that C is better

than B in both objectives, so we can say that C “dominates” B.

So, as long as C is a feasible option, there is no reason we

would choose B.
Ticket Travel

Time (hrs)

Ticket

Price ($)

A 10 1700

B 9 2000

C 8 1800

D 7.5 2300

E 6 2200

If we finish the comparisons, we also see that D is dominated

by E.

The rest of the options (A, C, E) have a trade-off associated

with Time vs. Price, so none is clearly superior to the others.

We call this the “non-dominated” set of solutions because

none of the solutions are dominated.

Ticket Travel

Time (hrs)

Ticket

Price ($)

A 10 1700

B 9 2000

C 8 1800

D 7.5 2300

E 6 2200

Usually, solutions of this type form a typical shape, shown in

the chart below:

Plane Ticket Options

0

1000

2000

3000

4000

5000

0 5 10 15 20 25

Flight Time (hrs)

P
ri

c
e
 (

$
)

A E

D

C

B

Feasible Region

Solutions that lie along the line are non-dominated solutions

 those that lie inside the line are dominated

 there is always another solution on the line that has at least one

objective that is better.

The line is called the Pareto front and solutions on it are

called Pareto-optimal.

All Pareto-optimal solutions are non-dominated.

Thus, it is important in MOO to find the solutions as close as

possible to the Pareto front and as far along it as possible.

For the following feasible region with objectives f1 and f2

where both f1 and f2 are minimized:

f1

f2

Feasible

Region

Pareto Front

One way to imagine finding points on the Pareto front is by

using a combination of numerical weights for the two

objectives:

f1

f2

w1

w2

w1
*

If this is done for a 90° span of lines, all the points on the

Pareto front will be found.

f1

f2

Actually, this is not the procedure that is used in practice, but

it is a good illustration of the concept.

This procedure would require finding all possible points in

the feasible region and then using many combinations of

weights.

For more than two objectives, the complexities and the

number of combinations make this impractical.

There are different methods used in practice

 one is to use a genetic algorithm to enumerate points along the

Pareto front over several iterations

 use some method to rank the quality of the trade-offs based on

the particular application being modeled

Shall discuss one particular genetic algorithm

 ant colony optimization (ACO)

Ant Colony Optimization

 studies artificial systems that take inspiration from the behavior of

real ant colonies

 used to solve discrete optimization problems

portions courtesy of University of Central Florida

Almost blind.

Incapable of achieving complex tasks alone.

Rely on the phenomena of swarm intelligence for survival.

Capable of establishing shortest-route paths from their colony to feeding sources and

back.

Use stigmergic communication via pheromone trails.

Follow existing pheromone trails with high probability.

What emerges is a form of autocatalytic behavior: the more ants follow a trail, the

more attractive that trail becomes for being followed.

The process is thus characterized by a positive feedback loop, where the probability of

a discrete path choice increases with the number of times the same path was chosen

before.

Ant Colony Optimization (ACO)

Naturally Observed Ant Behavior

All is well in the world of the ant.

Ant Colony Optimization (ACO)

Naturally Observed Ant Behavior

Oh no! An obstacle has blocked our path!

Ant Colony Optimization (ACO)

Naturally Observed Ant Behavior

Where do we go? Everybody, flip a coin.

Ant Colony Optimization (ACO)

Naturally Observed Ant Behavior

Shorter path reinforced.
time

distance
distance-x

pheromone
antsn

time

distance
distance-x

pheromone
antsn

pathshorter pathlonger

Probability of choosing
value j for state i is

tij is the pheromone
currently deposited at ij

Evaporate
(using r) and
update
pheromone for
value j in state i
given average
score sij for all
ants that chose
that state and
value

Related to ACO

