

Lecture Topic Projects
1 Intro, schedule, and logistics
2 Data Science components and tasks
3 Data types Project #1 out
4 Introduction to R, statistics foundations
5 Introduction to D3, visual analytics
6 Data preparation and reduction
7 Data preparation and reduction Project #1 due
8 Similarity and distances Project #2 out
9 Similarity and distances

10 Cluster analysis
11 Cluster analysis
12 Pattern miming Project #2 due
13 Pattern mining
14 Outlier analysis
15 Outlier analysis Final Project proposal due
16 Classifiers
17 Midterm
18 Classifiers
19 Optimization and model fitting
20 Optimization and model fitting
21 Causal modeling
22 Streaming data Final Project preliminary report due
23 Text data
24 Time series data
25 Graph data
26 Scalability and data engineering
27 Data journalism
 Final project presentation Final Project slides and final report due

Graphs are everywhere

 chemical compounds (Cheminformatics)

 protein structures, biological pathways/networks (Bioinformactics)

 program control flow, traffic flow, and workflow analysis

 XML databases, Web, and social network analysis

Graph is a general model

 trees, lattices, sequences, and items are degenerated graphs

Diversity of graphs

 directed vs. undirected, labeled vs. unlabeled (edges & vertices),

weighted, with angles & geometry (topological vs. 2-D/3-D)

Complexity of algorithms:

 many problems are of high complexity (NP complete)

Aspirin Yeast protein interaction network

fr
o
m

 H
.
Je

o
n
g
 e

t
a
l
N

a
tu

re
 4

1
1
,
4
1

(2
0
0
1
)

Internet Co-author network

Graphs are suitable for

capturing arbitrary

relations between the

various elements.

Vertex Element

Element’s Attributes

Relation Between

Two Elements

Type Of Relation

Vertex Label

Edge Label

Edge

Data Instance Graph Instance

Relation between

a Set of Elements

Hyper Edge

Provide enormous flexibility for modeling the underlying data as they allow the
modeler to decide on what the elements should be and the type of relations to

be modeled

Frequent subgraphs

 a (sub)graph is frequent if its support (occurrence frequency) in a

given dataset is no less than a minimum support threshold

 support of a graph g is defined as the percentage of graphs in G

which have g as subgraph

Applications of graph pattern mining:

 mining biochemical structures

 program control flow analysis

 mining XML structures or Web communities

 building blocks for graph classification, clustering, compression,

comparison, and correlation analysis

GRAPH DATASET

FREQUENT PATTERNS
(MIN SUPPORT IS 2)

(T1) (T2) (T3)

(1) (2)

GRAPH DATASET

FREQUENT PATTERNS
(MIN SUPPORT IS 2)

Formalizes the notion of equal graphs

More formally an isomorphism of graphs G1 and G2 is a

bijection f:V(G1)↦V(G2) that preserves adjacency

If G1=G2 then the obtained mapping becomes an

automorphism - a isomorphism from the graph to itself

 if there is an automorphism of f of graph G such that the

vertex v is mapped to vertex u then in a way the neighborhood

of u and v "looks" the same

Two subgraphs that are isomorphic

Maximum common subgraph (MCS)

 the largest possible subgraph that cannot be extended by an

addition of a vertex

 finding it is an optimization problem that is known to be NP-hard

 there can be many MCS for a pair of graphs G1 and G2

When two graphs share a large subgraph in common, it is
indicative of similarity

Un-normalized non-matching measure

 equal to the number of non-matching nodes between the two graphs

because it subtracts out the number of matching nodes |MCS(G1,G2)|
from each of |G1| and |G2| and then sums them

 unnormalized because the value of the distance depends on the raw
size of the underlying graphs.

 not desirable because it is more difficult to compare distances
between pairs of graphs of varying size

 more effective when the different graphs in the collection are of
approximately similar size.

Union-normalized distance

 within [0.1]

 normalizes the number of non-matching nodes U(G1,G2) between

the two graphs (unnormalized measure) with the number of nodes in

the union of the two graphs

 intuitively easier to interpret– two perfectly matching graphs will have

a distance of 0 from one another, and two perfectly nonmatching

 graphs will have a distance of 1

Max-normalized distance
 within [0.1]

Any of these distance measures can be computed effectively
only for small graphs

 for larger graphs, it becomes computationally too expensive to
evaluate these measures because of the need to determine the
maximum common subgraph between the two graphs

 use lexicon-base metrics for large graphs (see next)

Algorithm
 create a lexicon of frequent subgraph patterns by frequent subgraph

mining

 reduce the overlap among the frequent subgraph patterns

 create a new feature fi for each frequent subgraph Si selected

 it will create a feature set of size d

 for each graph Gi, create a vector-space representation in terms of
the features f1 . . . fd

 each graph contains the features, corresponding to the subgraphs
that it contains

 the frequency of each feature is the number of occurrences of the
corresponding subgraph in the graph Gi

 optionally apply tf-idf normalization

 use any similarity function to compute distances between graph
objects

Looks for frequent sub-structures (sub-graphs)

Recall a-priori pruning principle:

 if there is any item set which is infrequent, then its superset

should not be generated/tested

 apply the same principle for sub-graphs

 size of a subgraph may refer to either its nodes or edges

depending on the specific algorithm used

Downward closure

 any subset of a frequent itemset must be frequent

Number of edges is not constrained

 this can lead to ambiguities

Number of nodes is not constrained
 new level could have the same number than next level

 another form of ambiguity

Either distance-based or frequent substructure-based
 distance-based methods are more effective for smaller graphs, in

which distances can be computed robustly and efficiently

 frequent substructure-based methods are appropriate for larger
graphs where distance computations become qualitatively and
computationally impractical

Distance-based clustering
 use methods like k-medoids or spectral clustering

 computationally expensive to compute distances between large
graph objects

 effectiveness also suffers for large graphs because these graphs may
be similar only in some portions that repeat frequently

 the rare (and unique) portions of the graph may not factor in

• might use a substructure-based distance function instead

Frequent substructure-based methods

 extract frequent subgraphs from the data and use their

membership in input graphs to determine clusters

Algorithm

 apply frequent subgraph mining methods discussed to discover

frequent subgraph patterns in the underlying graphs

 select a subset of subgraphs to reduce overlap among the

different subgraphs

 create a new feature fi for each frequent subgraph Si discovered

 gives rise to lexicon of d features

 create a d-vector of features – one element per feature

 represent each graph in terms of the features and their frequency

 cluster as usual

A frequent substructure-based clustering method

Originally proposed for XML graphs

 a substructure can be viewed as a PROJection of the graph

Use either distance or pattern/structure based methods

discussed before to form the decision metric for any standard

classifier

 kernel-based methods are also possible

