


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Data Science components and tasks   
3 Data types Project #1 out  
4 Introduction to R, statistics foundations   
5 Introduction to D3, visual analytics   
6 Data preparation and reduction    
7 Data preparation and reduction  Project #1 due 
8 Similarity and distances Project #2 out 
9 Similarity and distances   

10 Cluster analysis   
11 Cluster analysis   
12 Pattern miming  Project #2 due 
13 Pattern mining   
14 Outlier analysis   
15 Outlier analysis Final Project proposal due 
16 Classifiers   
17 Midterm   
18 Classifiers   
19 Optimization and model fitting   
20 Optimization and model fitting   
21 Causal modeling   
22 Streaming data Final Project preliminary report due 
23 Text data   
24 Time series data   
25 Graph data   
26 Scalability and data engineering   
27 Data journalism   
  Final project presentation  Final Project slides and final report due 



Graphs are everywhere 

 chemical compounds (Cheminformatics) 

 protein structures, biological pathways/networks (Bioinformactics) 

 program control flow, traffic flow, and workflow analysis  

 XML databases, Web, and social network analysis 

Graph is a general model 

 trees, lattices, sequences, and items are degenerated graphs 

Diversity of graphs 

 directed vs. undirected, labeled vs. unlabeled (edges & vertices), 

weighted, with angles & geometry (topological vs. 2-D/3-D)  

Complexity of algorithms:  

 many problems are of high complexity (NP complete) 



Aspirin Yeast protein interaction network 
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Internet Co-author network 





Graphs are suitable for 

capturing arbitrary 

relations between the 

various elements. 

Vertex Element 

Element’s Attributes 

Relation Between 

Two Elements 

Type Of Relation 

Vertex Label 

Edge Label 

Edge 

Data Instance Graph Instance 

Relation between 

a Set of Elements 

Hyper Edge 

Provide enormous flexibility for modeling the underlying data as they allow the 
modeler to decide on what the elements should be and the type of relations to 

be modeled 



Frequent subgraphs 

 a (sub)graph is frequent if its support (occurrence frequency) in a 

given dataset is no less than a minimum support threshold 

 support of a graph g is defined as the percentage of graphs in G 

which have g as subgraph 

Applications of graph pattern mining: 

 mining biochemical structures 

 program control flow analysis 

 mining XML structures or Web communities 

 building blocks for graph classification, clustering, compression, 

comparison, and correlation analysis 



GRAPH DATASET 

FREQUENT PATTERNS 
(MIN SUPPORT IS 2) 

(T1) (T2) (T3) 

(1) (2) 



GRAPH DATASET 

FREQUENT PATTERNS 
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Formalizes the notion of equal graphs 

 

 

 

More formally an isomorphism of graphs G1 and G2 is a 

bijection f:V(G1)↦V(G2) that preserves adjacency 

 

If G1=G2 then the obtained mapping becomes an 

automorphism - a isomorphism from the graph to itself 

 if there is an automorphism of f of graph G such that the 

vertex v is mapped to vertex u then in a way the neighborhood 

of u and v "looks" the same 



Two subgraphs that are isomorphic 

 

Maximum common subgraph (MCS) 

 the largest possible subgraph that cannot be extended by an 

addition of a vertex 

 finding it is an optimization problem that is known to be NP-hard 

 there can be many MCS for a pair of graphs G1 and G2 

 



When two graphs share a large subgraph in common, it is 
indicative of similarity 

 

Un-normalized non-matching measure 

 

 
 equal to the number of non-matching nodes between the two graphs 

because it subtracts out the number of matching nodes |MCS(G1,G2)| 
from each of |G1| and |G2| and then sums them  

 unnormalized because the value of the distance depends on the raw 
size of the underlying graphs.  

 not desirable because it is more difficult to compare distances 
between pairs of graphs of varying size 

 more effective when the different graphs in the collection are of 
approximately similar size. 



Union-normalized distance 

 within [0.1] 

 

 

 

 normalizes the number of non-matching nodes U(G1,G2) between 

the two graphs (unnormalized measure) with the number of nodes in 

the union of the two graphs 

 

 

 

 intuitively easier to interpret– two perfectly matching graphs will have 

a distance of 0 from one another, and two perfectly nonmatching 

 graphs will have a distance of 1 

 



Max-normalized distance 
 within [0.1] 

 

 

 

 

 

Any of these distance measures can be computed effectively 
only for small graphs 

 for larger graphs, it becomes computationally too expensive to 
evaluate these measures because of the need to determine the 
maximum common subgraph between the two graphs 

 use lexicon-base metrics for large graphs (see next) 



Algorithm 
 create a lexicon of frequent subgraph patterns by frequent subgraph 

mining 

 reduce the overlap among the frequent subgraph patterns 

 create a new feature fi for each frequent subgraph Si selected 

 it will create a feature set of size d 

 for each graph Gi, create a vector-space representation in terms of 
the features f1 . . . fd 

 each graph contains the features, corresponding to the subgraphs 
that it contains 

 the frequency of each feature is the number of occurrences of the 
corresponding subgraph in the graph Gi 

 optionally apply tf-idf normalization  

 use any similarity function to compute distances between graph 
objects 





Looks for frequent sub-structures (sub-graphs) 

 

Recall a-priori pruning principle: 

 if there is any item set which is infrequent, then its superset 

should not be generated/tested  

 apply the same principle for sub-graphs 

 size of a subgraph may refer to either its nodes or edges 

depending on the specific algorithm used 



Downward closure  

 any subset of a frequent itemset must be frequent 

 



Number of edges is not constrained 

 this can lead to ambiguities  



Number of  nodes is not constrained  
 new level could have the same number than next level 

 another form of ambiguity 



Either distance-based or frequent substructure-based 
 distance-based methods are more effective for smaller graphs, in 

which distances can be computed robustly and efficiently 

 frequent substructure-based methods are appropriate for larger 
graphs where distance computations become qualitatively and 
computationally impractical 

 

Distance-based clustering 
 use methods like k-medoids or spectral clustering 

 computationally expensive to compute distances between large 
graph objects 

 effectiveness also suffers for large graphs because these graphs may 
be similar only in some portions that repeat frequently  

       the rare (and unique) portions of the graph may not factor in 

• might use a substructure-based distance function instead 

 



Frequent substructure-based methods 

 extract frequent subgraphs from the data and use their 

membership in input graphs to determine clusters 

 

Algorithm 

 apply frequent subgraph mining methods discussed to discover 

frequent subgraph patterns in the underlying graphs 

 select a subset of subgraphs to reduce overlap among the 

different subgraphs 

 create a new feature fi for each frequent subgraph Si  discovered 

 gives rise to lexicon of d features 

 create a d-vector of features – one element per feature 

 represent each graph in terms of the features and their frequency 

 cluster as usual  



A frequent substructure-based clustering method 

Originally proposed for XML graphs 

 a substructure can be viewed as a PROJection of the graph 



Use either distance or pattern/structure based methods 

discussed before to form the decision metric for any standard 

classifier  

 kernel-based methods are also possible  


