


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Data Science components and tasks   
3 Data types Project #1 out  
4 Introduction to R, statistics foundations   
5 Introduction to D3, visual analytics   
6 Data preparation and reduction    
7 Data preparation and reduction  Project #1 due 
8 Similarity and distances Project #2 out 
9 Similarity and distances   

10 Cluster analysis   
11 Cluster analysis   
12 Pattern miming  Project #2 due 
13 Pattern mining   
14 Outlier analysis   
15 Outlier analysis Final Project proposal due 
16 Classifiers   
17 Midterm   
18 Classifiers   
19 Optimization and model fitting   
20 Optimization and model fitting   
21 Causal modeling   
22 Streaming data Final Project preliminary report due 
23 Text data   
24 Time series data   
25 Graph data   
26 Scalability and data engineering   
27 Data journalism   
  Final project presentation  Final Project slides and final report due 



Data cleaning 

 fill in missing values 

 smooth noisy data 

 identify or remove outliers 

 resolve inconsistencies 

 

Data reduction 

 obtain reduced volume, but get same/similar analytical results 

 data discretization (for numerical data) 

 data aggregation (summarization) 

 data transformation/normalization 

 dimensionality reduction 

 data compression/generalization 

 

 

 



By axis rotation 
 determine a more efficient basis  

 Principal Component Analysis (PCA) 

 Singular value decomposition (SVD) 

 Latent semantic analysis (LSA) 

 

By type transformation 
 determine a more efficient data type 

 Fourier analysis and Wavelets for grids 

 Multidimensional scaling (MSD) for graphs 

 Locally Linear Embedding 

 Isomap 

 Self Organizing Maps (SOM) 

 Linear Discriminant Analysis (LDA) 

 





Analytical: 

 

Samples: 

 

An n-D dataset has n variables x1, x2, … xn  

 define pairwise covariance among all of these variables  

 construct a covariance matrix  

( , ) [( )( )]x yCov X Y E X Y   

1

cov ( )( )
n

xy xy i i

i

x x y y


   



Pearson’s correlation coefficient: 

 

 

 

Sample correlation (n observations): 

 

 

Correlation rates between -1 and 1: 

[( )( )]( , )
( , )

x y

x y x y

E X YCov X Y
Corr X Y

 

   

 
 

1

2 2

1 1

( )( )

( ) ( )

n

i i

i
xy

n n

i i

i i

x x y y

r

x x y x



 

 



 



 



Correlation and regression are not reliable here 

 defined for linear relationships 

 visualization can help here 

 

None of these point distributions have correlations: 



just value distribution (scatterplot matrix) 



Ultimate goal:  

 find a coordinate system that can represent the variance in the 

data with as few axes as possible  

 

 

 

 

 

 

 

 

 rank these axes by the amount of variance (blue, red) 

 drop the axes that have the least variance (red)  



4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st Principal  

Component, y1 

2nd Principal  

Component, y2 



Find the principal components by Eigen decomposition of  
 covariance matrix Cov 

 correlation matrix Corr 

 lets call it C 

 

 solve the Eigen value problem 

 

 do this via QR factorization or LU decomposition to get 

 

 

                     Q: matrix with Eigenvectors 

                     : diagonal matrix with Eigenvalues l 

 

 now order the Eigenvectors in terms of their Eigenvalues l 

( ) 0il C I ix

1Q Q C



4.0 4.5 5.0 5.5 6.0
2

3

4

5

λ1 
λ2 



When to use what? 

 use the covariance matrix when the variable scales are similar  

 use the correlation matrix when the variables are on different 

scales 

 the correlation matrix standardizes the data 

 in general they give different results, especially when the scales 

are different 

 

 

 



Before PCA 

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8 10 12

Variable X1

V
a
ri

a
b

le
 X

2

PC 1 

PC 2 



l1 = 9.8783  l2 = 3.0308  Trace = 12.9091 

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance 

 

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8 10 12

PC 1

P
C

 2



Some familiar faces… 

 



We can reconstruct each face as a linear combination of 

“basis” faces, or Eigenfaces [M. Turk and A. Pentland (1991)] 

 

+ 

Average Face 

Eigenfaces 



90% variance is 

captured by the first 

50 eigenvectors 

Reconstruct existing 

faces using only 50 

basis images 

We can also generate 

new faces by 

combining 

eigenvectors with 

different weights 

V0 

x ∑ 



The same as PCA when the mean of each attribute is zero 

 

SVD does not subtract the mean 

 appropriate if values close to zero should not be influential 

 PCA puts them at in the extreme negative side 

 

SVD often used for text analysis 

 values close to zero are frequent and should not affect the analysis  



Decomposes C into the matrix: 

 

 

 

 

qi and pi are two column vectors with significance i 

 

 

 

Example: in a user-item ratings matrix we wish to determine: 

 a reduced representation of the users 

 a reduced representation of the items 

 SVD has the basis vectors for both of these reductions   



Create an occurrence matrix (term-document matrix) 

 words (terms t) are the rows 

 paragraphs (documents d) are the columns 

 uses the term frequency–inverse document frequency (tf-idf) metric 

 tf(t,d) = simplest form is frequency of t in d = f(t,d) 

 

 idf(t,d)                                           

 

 N = number of docs = |D| , D is the corpus of documents 

 idf is a measure of term rareness, it’s 0 when term occurs in all of D 

 important terms get a higher tf-idf 

Use SVD to reduce the number of rows 

 preserves similarity of columns    

 

 





U = term-concept matrix 
              concept = latent (hidden) topic 

V = concept-document matrix 

sort and keep the k  
most significant rows/columns 



How many concepts to use when approximating the matrix? 

 if too few, important patterns are left out 

 if too many, noise caused by random word choices will creep in 

 can use the elbow method in the scree plot 

 

Throw out the 1st dimension in U and V 

 in U it is correlates with document length 

 in V it correlates with the number of times a term was mentioned 

 

Now we have a k-D concept space                                                     

shared by both terms and documents 

 

concept 2 

concept 1 

concept 3 

document 

term 



Project the k-D concept space into 2D and visualize as a map 

 can cluster the map 

 the cluster of documents are then labeled by the terms 

 provides map semantics  

 

 



LSA assumes a Gaussian distribution and Frobenius norm  

 this may not fit all problems 

 

LSA cannot handle polysemy effectively 

 need LDA (Latent Dirichlet Allocation) for this 

 

LSA depends heavily on SVD  

 computationally intensive 

 hard to update as new documents appear 

 but faster algorithms have emerged recently  





A sequence of multi-scale square-shaped functions  

 together they form a wavelet family or basis 

 each has half the size than the one before 



Two basis function each level of scale 

 wavelet = extract the detail at that level (HP) 

 scaling = remove the detail and return what’s left for the next  

                      level (LP) 

 

 

 

 

 

 

 



Goal 

 decompose the signal into 

wavelet coefficients  

 eliminate the coefficients with 

magnitude < threshold 

 keep the others 

 the higher the threshold the 

more the compression 

 

 



2D case 



Wavelets are for regular grids 

MDS is for irregular structures 

 scattered points in high-dimensions (N-D) 

 adjacency matrices 

 

Maps the distances between observations from N-D into low-

D (say 2D) 

 attempts to ensure that differences between pairs of points in this 

reduced space match as closely as possible 



MDS turns a distance matrix into a network or point cloud  
 correlation, cosine, Euclidian, and so on 

 

Suppose you know a matrix of distances among cities 

 

 

 

 

 

 

 

Chicago Raleigh Boston Seattle S.F. Austin Orlando 

Chicago 0 

Raleigh 641 0 

Boston 851 608 0 

Seattle 1733 2363 2488 0 

S.F. 1855 2406 2696 684 0 

Austin 972 1167 1691 1764 1495 0 

Orlando 994 520 1105 2565 2458 1015 0 











𝐸 = 𝐷𝑖𝑗 − 𝑑𝑖𝑗
2

𝑖<𝑗

 



Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000 

 

 

 

 

 

 

Tries to unwrap a high-dimensional surface (A)  manifold 
 noisy points could be averaged first and projected onto the manifold 

 

Algorithm 
 construct neighborhood graph G  (B) 

 for each pair of points in G compute the shortest path distances  
geodesic distances 

 fill similarity matrix with these geodesic distances 

 embed (layout) in low-D (2D) with MDS  (C) 

 



by: S. Roweis, L. Saul, Science, 2000 

Based on simple geometric intuitions. 

 suppose the data consist of N real-valued vectors Xi, each of 

dimensionality D 

 each data point and its neighbors are expected to lie on or close 

to a locally linear patch of the manifold 

 

 

 

Low dimensional Manifold High dimensional Manifold 





Steps: 

 assign K neighbors to each data point  

 compute the weights Wij that best linearly reconstruct the data 

point from its K neighbors, solving the  constrained least-squares 

problem 

 

         έ(W) =  

 

 compute the low-dimensional embedding vectors       best 

reconstructed by Wij 

 

 

 

iX


iY


 
j

jij

i

i XWX 2||


 
i j

jijYWYY 2||)(




Introduced by Teuvo Kohonen 

 unsupervised learning and clustering algorithm 

 has advantages compared to hierarchical clustering 

 often realized as an artificial neural network 

 

SOMs group the data  

 perform a nonlinear projection from N-dimensional input space 

onto two-dimensional visualization space 

 provide a useful topological arrangement of information objects 

in order to display clusters of similar objects in information space 

 



Map a dataset of 3D color vectors into a 2D plane 

 assume you have an image with 5 colors  

 want to see how many there are of each 

 compute a SOM of the color vectors  

 

SOM 



Create array and connect all elements to the N 
input vector dimensions  

 shown here: 2D vector with 44 elements   

 initialize weights  

 

For each input vector chosen at random 
 find node with weights most like the input vector 

 call that node the Best Matching Unit (BMU) 

 find nodes within neighborhood radius r of BMU  

• initially r is chosen as the radius of the lattice 

• diminishes at each time step 

 adjust the weights of the neighboring nodes to 
make them more like the input vector 

• the closer a node is to the BMU, the more its 
weights get altered 



Height represents density or number of documents in the region 

Invented at Pacific Northwest National Lab (PNNL) 





 

 

LDA was proposed by Ronald Fisher in 1936 

 

  

 

 

See separate slides  

 by Ricardo Gutierrez-Osuna (Texas A&M University) 

 

 


