


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Data Science components and tasks   
3 Data types Project #1 out  
4 Introduction to R, statistics foundations   
5 Introduction to D3, visual analytics   
6 Data preparation and reduction    
7 Data preparation and reduction  Project #1 due 
8 Similarity and distances Project #2 out 
9 Similarity and distances   

10 Cluster analysis   
11 Cluster analysis   
12 Pattern mining  Project #2 due 
13 Pattern mining   
14 Outlier analysis   
15 Outlier analysis Final Project proposal due 
16 Classifiers   
17 Midterm   
18 Classifiers   
19 Optimization and model fitting   
20 Optimization and model fitting   
21 Causal modeling   
22 Streaming data Final Project preliminary report due 
23 Text data   
24 Time series data   
25 Graph data   
26 Scalability and data engineering   
27 Data journalism   
  Final project presentation  Final Project slides and final report due 



We will discuss 

 Spectral clustering (Shi and Malik, 2000) 

 DBSCAN (Ester et al., 1996) 

 t-SNE (van der Maaten and Hinton, 2008)  



Some clustering don’t lend themselves to a “centroid” based 
definition of a cluster 

 

 

 

 

 

 

 

These kinds of clusters are defined by points that are close 
any member in the cluster, rather than the average member 
of the cluster 

This and the next 22 slides are due to Andrew Rosenberg, CUNY 



We can represent the relationships between data points in a 

graph. 



We can represent the relationships between data points in a 

graph. 

Weight the edges by the similarity between points 



What is the best way to calculate similarity between two data 

points? 

Distance based:  

 



Nodes and Edges 

Edges can have weights associated with them 

 

 

 

 

 

 

Here the weights correspond to pairwise affinity 



Degree 

 

 

 

 

Volume of a set 



The cut between two subgraphs is calculated as follows 
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The minimum cut of a graph identifies an optimal 

partitioning of the data. 

 

Spectral Clustering 

 Recursively partition the data set 

• Identify the minimum cut 

• Remove edges 

• Repeat until k clusters are identified 



Minimum (bipartitional) cut 



Minimum (bipartitional) cut 



Minimal (bipartitional) normalized cut. 

 

 

 

 

 

 

 

 

 

 

Unnormalized cuts are attracted to outliers. 



ε-neighborhood graph 

 Identify a threshold value, ε, and include edges if the affinity 

between two points is greater than ε. 

 

k-nearest neighbors 

 Insert edges between a node and its k-nearest neighbors. 

 Each node will be connected to (at least) k nodes. 

 

Fully connected 

 Insert an edge between every pair of nodes. 



The minimum cut of a graph identifies an optimal 

partitioning of the data. 

 

Spectral Clustering 

 Recursively partition the data set 

• Identify the minimum cut 

• Remove edges 

• Repeat until k clusters are identified 



Minimum Cut 
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Normalized Minimum Cut 
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Normalized Minimum Cut 
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Identifying a minimum cut is NP-hard. 

 there are efficient approximations using linear algebra. 

 based on the Laplacian Matrix L, or graph Laplacian 

 

L=D-A  

 

A= affinity matrix  

 

 

D= diagonal matrix where  

 

 for each node i sum weights with all of its neighbors ij 
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Identify eigenvectors of the Laplacian matrix 

 Eigenvalues of the laplacian are approximate solutions to mincut 

problem 

 

Perform k-Means on this eigenvector transformation  

 

 

 

 

 

 

Project back to the initial data representation. 

k Eigenvectors 

n data points 

Each row represents a 
data point in the eigenvector  
space 



Ideal Case 
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L = D-W 

Positive semi-definite 

The lowest eigenvalue is 0, eigenvector is 

The second lowest contains the solution 

 small values indicate good graph partitioning 

 The corresponding eigenvector contains the cluster indicator for 

each data point 

 

Each eigenvector partitions the data set into two clusters. 

 The entry in the second eigenvector determines the first cut. 

 Subsequent eigenvectors can be used to  further partition into 

more sets. 

 



Cluster E into k clusters 

 assign a data point i to cluster j only if row i of E was assigned to 

cluster j 

 this finalizes the spectral clustering 

 in practice need to so some normalizations  

 

Illustrative case: 

 two isolated clusters 

      

 

Its adjacency matrix  

after clustering (stylized) 
Kernel-linked graph of  

2 isolated clusters 



Dense clusters with some sparse connections 



Two groups or points 

 one larger than the other but rather close 

 second eigenvalue relatively large (46.7158) – indicates that a 

good cut is not to be expected 

 sorted second eigenvector has large gap – indicates two clusters 

 

 

A 

unsorted sorted 
second Eigenvector 

cluster 2 

cluster 1 



Perform the same sorting on A and obtain the following 

 two clusters  

 but no clear cut as predicted by second Eigenvalue 

 



Three clusters but better separated 

 second Eigenvalue is smaller (0.6031) 

 we expect to find some fairly small cuts or rather tight clusters 

 sorted second eigenvector has two large gaps – expect 3 clusters  

A sorted second Eigenvector  sorted A and three clusters  
emerge 



Many small clusters 

 Eigenvalue analysis shows that second eigenvalue is small (0.0738) 

 sorted second Eigenvector shows one revealing gap – the small 

cluster on the top left of the sorted A 

 

A sorted second Eigenvector  sorted A and 1 cluster  
on top left emerges 



To expose the remainder of the structure 

 apply the second smallest eigenvector recursively 

 use the second smallest eigenvector of the full graph to 

determine a good way to split the graph into two pieces 

 then repeat the process on each subgraph 



See this webpage  

 

Can also cluster the E and use all the Eigenvectors directly 

 three class partition  

Affinity matrix eigenvectors row normalization output 

https://www.cs.purdue.edu/homes/dgleich/demos/matlab/spectral/spectral.html




K-means Spectral Clustering 



See slides by M.Ester, H.P.Kriegel, J.Sander and Xu 



 t-distributed stochastic neighbor embedding 



Uses the following density-based (probabilistic) distance 

metric 

 

 

 

 

Measures how close xj is from xi, considering a Gaussian 

distribution around xi with a given variance σ2
i.  

 this variance is different for every point 

 t is chosen such that points in dense areas are given a smaller 

variance than points in sparse areas 



Use a symmetrized version of the conditional similarity: 

 

 

 

Similarity (distance) metric for map points: 

 

 

 

This uses the t-student distribution with one degree of 

freedom, or Cauchy distribution, instead of a Gaussian 

distribution 

 



Can use mass-spring system enforcing minimum of  |pij−qij| 

The classic handwritten 

digits datasets. It contains 1,797 

images with 8∗8=64 pixels each. 





See this webpage  

https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm

