CSE 590 Data Science Fundamentals

CLUSTER ANALYSIS ||

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY AND SUNY KOREA

Lecture	Торіс	Projects		
1	Intro, schedule, and logistics			
2	Data Science components and tasks			
3	Data types	Project #1 out		
4	Introduction to R, statistics foundations			
5	Introduction to D3, visual analytics			
6	Data preparation and reduction			
7	Data preparation and reduction	Project #1 due		
8	Similarity and distances	Project #2 out		
9	Similarity and distances			
10	Cluster analysis			
11	Cluster analysis			
12	Pattern mining	Project #2 due		
13	Pattern mining			
14	Outlier analysis			
15	Outlier analysis	Final Project proposal due		
16	Classifiers			
17	Midterm			
18	Classifiers			
19	Optimization and model fitting			
20	Optimization and model fitting			
21	Causal modeling			
22	Streaming data	Final Project preliminary report due		
23	Text data			
24	Time series data			
25	Graph data			
26	Scalability and data engineering			
27	Data journalism			
	Final project presentation	Final Project slides and final report due		

We will discuss

- Spectral clustering (Shi and Malik, 2000)
- DBSCAN (Ester et al., 1996)
- t-SNE (van der Maaten and Hinton, 2008)

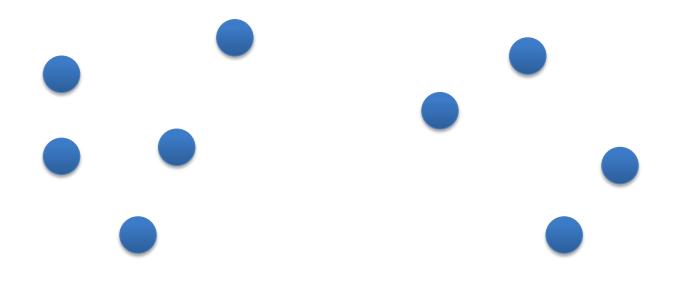
SPECTRAL CLUSTERING

Some clustering don't lend themselves to a "centroid" based definition of a cluster

These kinds of clusters are defined by points that are close **any** member in the cluster, rather than the **average** member of the cluster

GRAPH REPRESENTATION

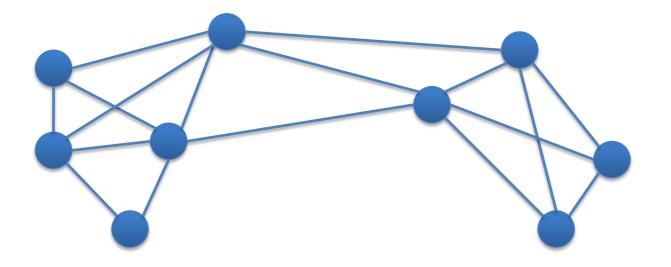
We can represent the relationships between data points in a graph.



GRAPH REPRESENTATION

We can represent the relationships between data points in a graph.

Weight the edges by the similarity between points



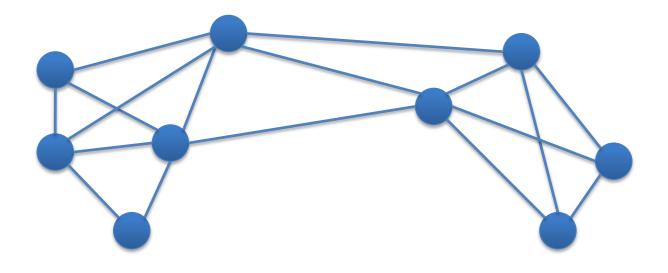
REPRESENTING DATA IN A GRAPH

What is the best way to calculate similarity between two data points?

Distance based:

$$d(x_i, x_j) = \exp\left\{\frac{\|x_i - x_j\|}{\sigma^2}\right\}$$

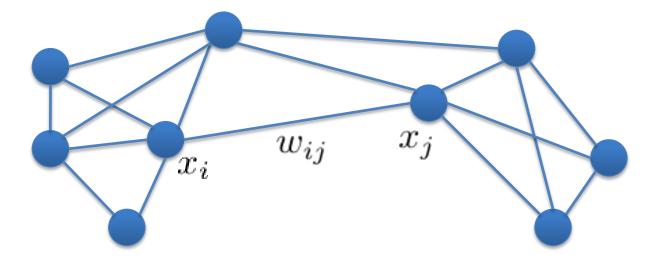
11



GRAPHS

Nodes and Edges

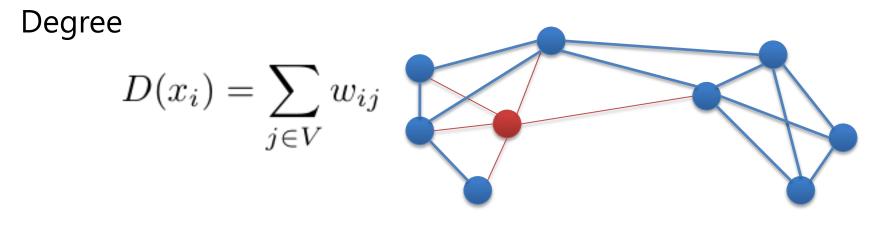
Edges can have weights associated with them



Here the weights correspond to pairwise affinity

$$w_{ij} = d(x_i, x_j) = \exp\left\{\frac{\|x_i - x_j\|}{\sigma^2}\right\}$$

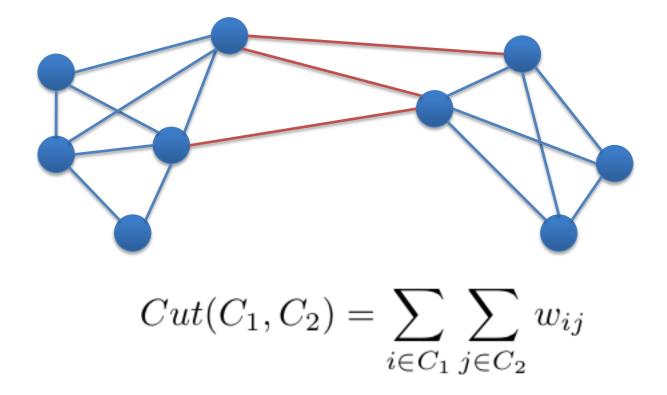
GRAPHS



Volume of a set

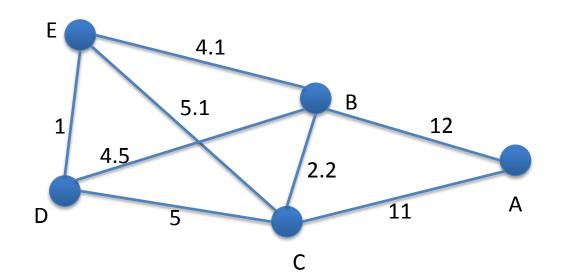
$$Vol(C) = \sum_{i \in C} D(x_i)$$

The **cut** between two subgraphs is calculated as follows



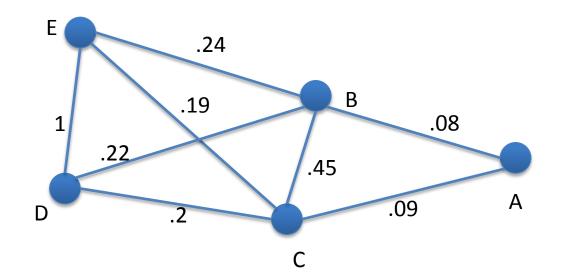
GRAPH EXAMPLES - DISTANCE

Height	Weight
20	5
8	6
9	4
4	4
4	5



GRAPH EXAMPLES - SIMILARITY

Height	Weight
20	5
8	6
9	4
4	4
4	5



INTUITION

The minimum cut of a graph identifies an optimal partitioning of the data.

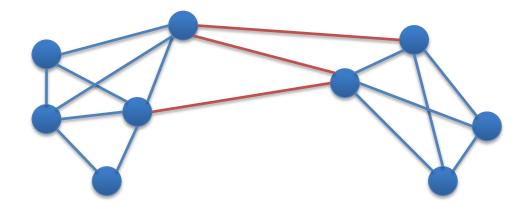
Spectral Clustering

- Recursively partition the data set
 - Identify the minimum cut
 - Remove edges
 - Repeat until k clusters are identified

GRAPH CUTS

Minimum (bipartitional) cut

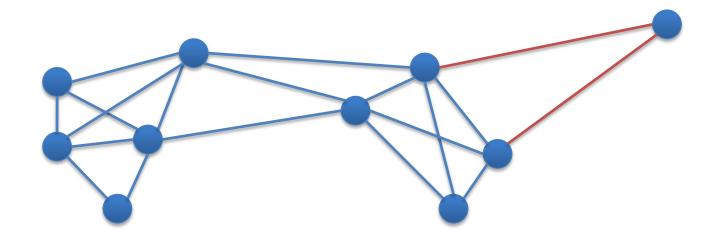
$$\min Cut(C_1, C_2) = \sum_{i \in C_1} \sum_{j \in C_2} w_{ij}$$



GRAPH CUTS

Minimum (bipartitional) cut

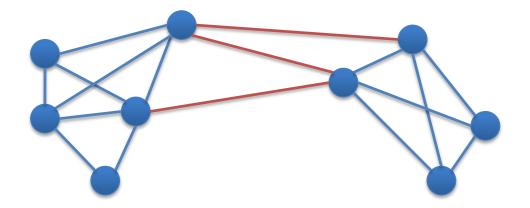
$$\min Cut(C_1, C_2) = \sum_{i \in C_1} \sum_{j \in C_2} w_{ij}$$



GRAPH CUTS

Minimal (bipartitional) <u>normalized</u> cut.

$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$



Unnormalized cuts are attracted to outliers.

GRAPH DEFINITIONS

ε-neighborhood graph

 Identify a threshold value, ε, and include edges if the affinity between two points is greater than ε.

k-nearest neighbors

- Insert edges between a node and its k-nearest neighbors.
- Each node will be connected to (at least) k nodes.

Fully connected

• Insert an edge between every pair of nodes.

INTUITION

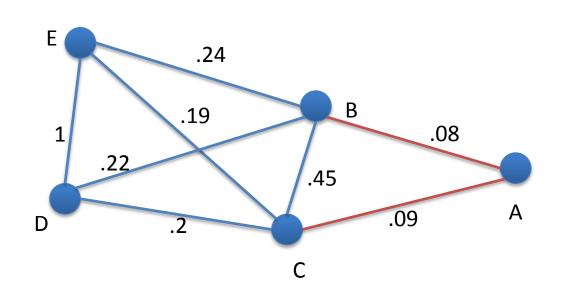
The minimum cut of a graph identifies an optimal partitioning of the data.

Spectral Clustering

- Recursively partition the data set
 - Identify the minimum cut
 - Remove edges
 - Repeat until k clusters are identified

SPECTRAL CLUSTERING EXAMPLE

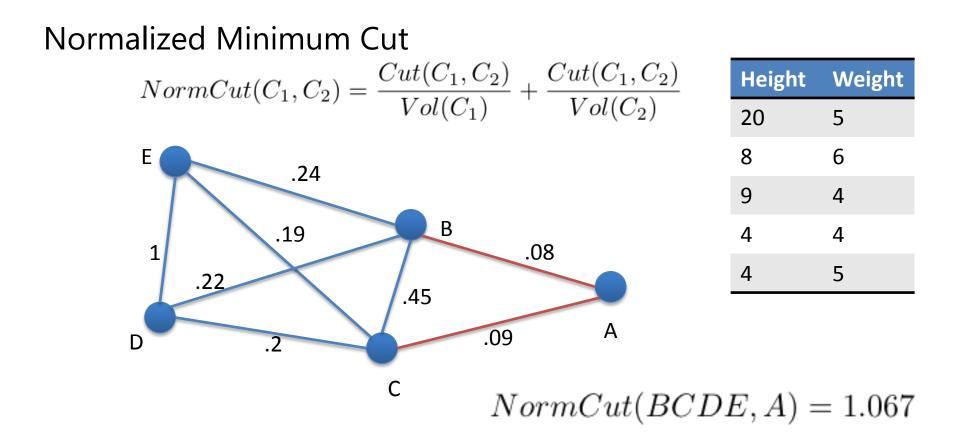
Minimum Cut



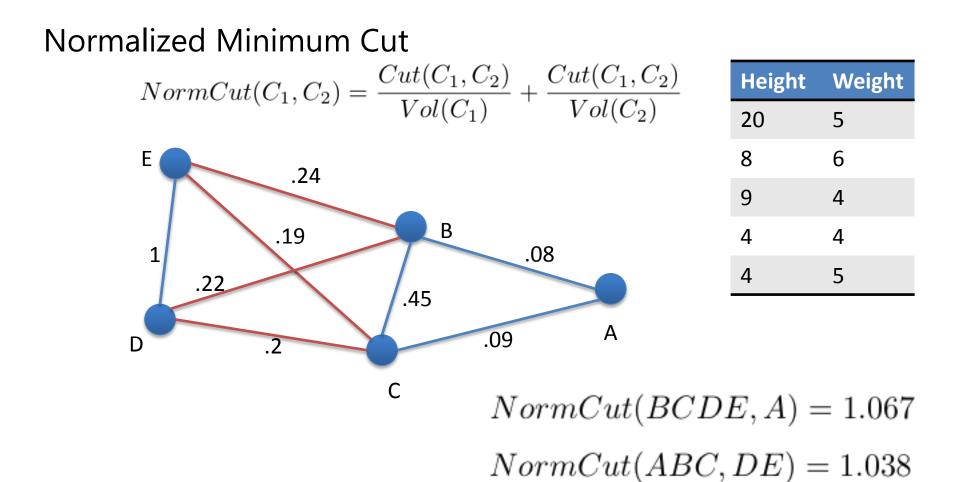
Height	Weight
20	5
8	6
9	4
4	4
4	5

Cut(BCDE, A) = 0.17

SPECTRAL CLUSTERING EXAMPLE



SPECTRAL CLUSTERING EXAMPLE



PROBLEM AND SOLUTION

D

0

0

.1

.1

.1

0

D

0

Identifying a minimum cut is NP-hard.

- there are efficient approximations using linear algebra.
- based on the Laplacian Matrix L, or graph Laplacian

B С Α L=D-A .2 .4 .2 Α .2 .1 .2 .5 В .3 A= affinity matrix С .2 .3 .6 .3

= diagonal matrix where
$$D_{ii} = \sum_{j} A_{ij}$$
.

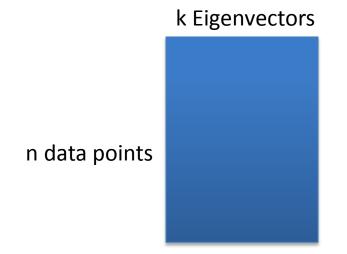
• for each node i sum weights with all of its neighbors ij

SPECTRAL CLUSTERING

Identify eigenvectors of the Laplacian matrix $Lv = \lambda v$

 Eigenvalues of the laplacian are approximate solutions to mincut problem

Perform k-Means on this eigenvector transformation

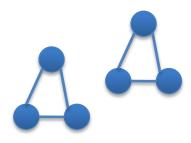


Each row represents a data point in the eigenvector space

Project back to the initial data representation.

SIMPLE EXAMPLE

Ideal Case



1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0
0	0	0	1	1	1
0	0	0	1	1	1
0	0	0	1	1	1

$$Lv = \lambda v$$

1	0
1	0
1	0
0	1
0	1
0	1

THE GRAPH LAPLACIAN

L = D-W

$$x^TLx \geq 0$$

Positive semi-definite $x = 2x \ge 2$

The lowest eigenvalue is 0, eigenvector is $\vec{1}$

The second lowest contains the solution

- small values indicate good graph partitioning
- The corresponding eigenvector contains the cluster indicator for each data point

Each eigenvector partitions the data set into two clusters.

- The entry in the second eigenvector determines the first cut.
- Subsequent eigenvectors can be used to further partition into more sets.

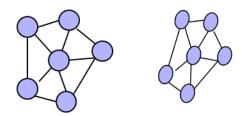
EIGENVECTORS OF THE GRAPH LAPLACIAN

Cluster *E* into *k* clusters

- assign a data point *i* to cluster *j* only if row *i* of *E* was assigned to cluster *j*
- this finalizes the spectral clustering
- in practice need to so some normalizations

Illustrative case:

two isolated clusters

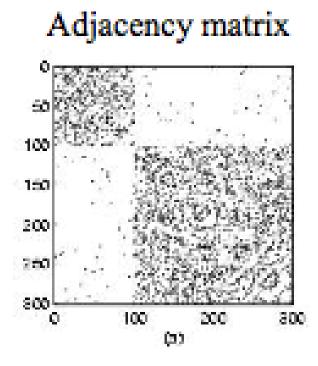


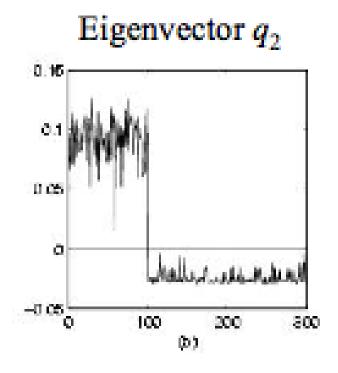
Kernel-linked graph of 2 isolated clusters

Its adjacency matrix after clustering (stylized)

EXAMPLE

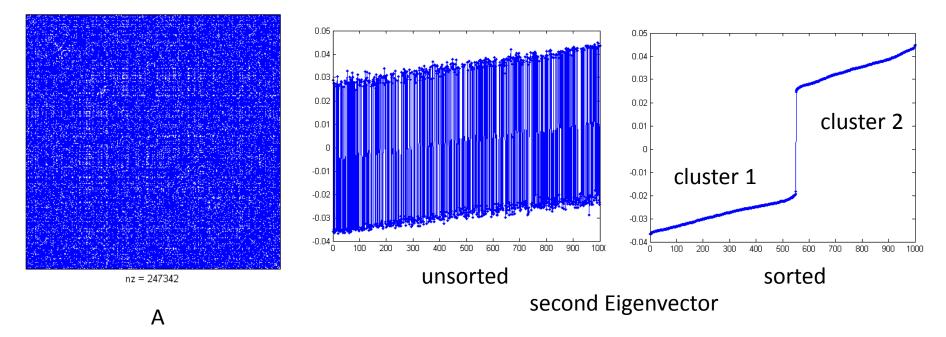
Dense clusters with some sparse connections





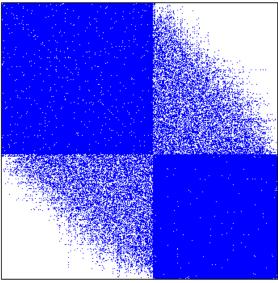
Two groups or points

- one larger than the other but rather close
- second eigenvalue relatively large (46.7158) indicates that a good cut is not to be expected
- sorted second eigenvector has large gap indicates two clusters



Perform the same sorting on A and obtain the following

- two clusters
- but no clear cut as predicted by second Eigenvalue

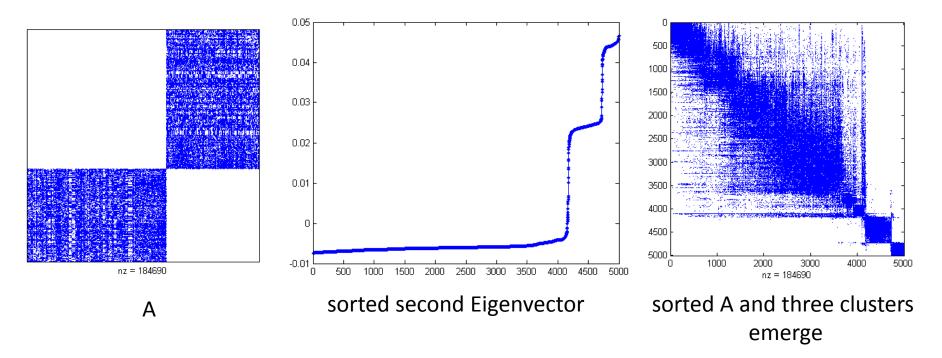


nz = 247342

EXAMPLE 2

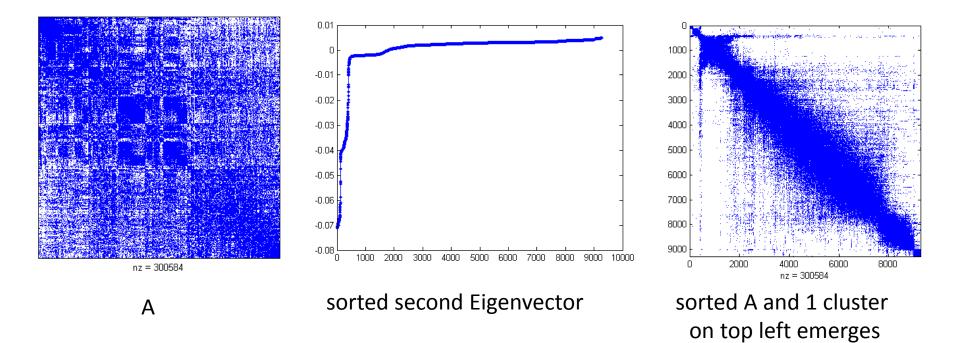
Three clusters but better separated

- second Eigenvalue is smaller (0.6031)
- we expect to find some fairly small cuts or rather tight clusters
- sorted second eigenvector has two large gaps expect 3 clusters



Many small clusters

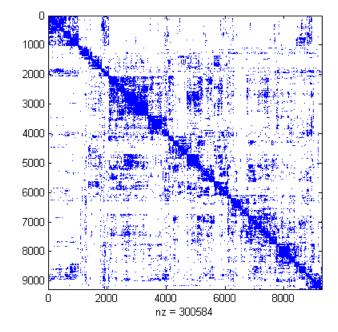
- Eigenvalue analysis shows that second eigenvalue is small (0.0738)
- sorted second Eigenvector shows one revealing gap the small cluster on the top left of the sorted A



EXAMPLE 3

To expose the remainder of the structure

- apply the second smallest eigenvector recursively
- use the second smallest eigenvector of the full graph to determine a good way to split the graph into two pieces
- then repeat the process on each subgraph

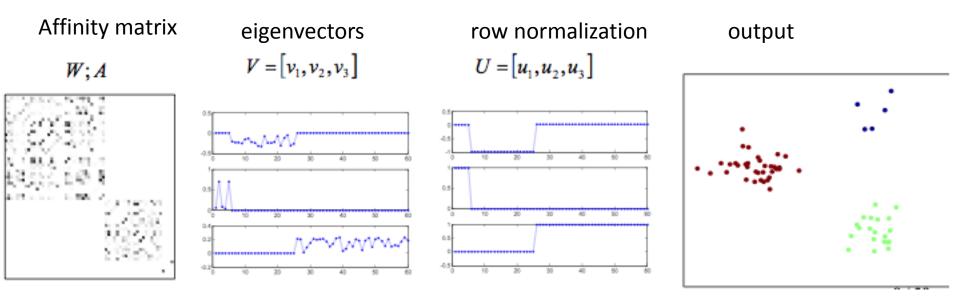


MORE INFORMATION

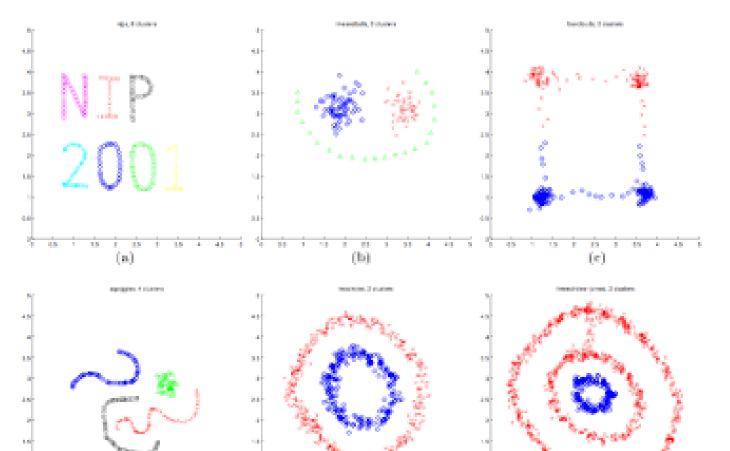
See this webpage

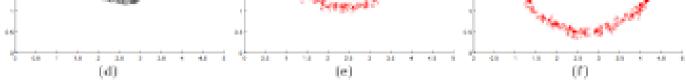
Can also cluster the E and use all the Eigenvectors directly

three class partition

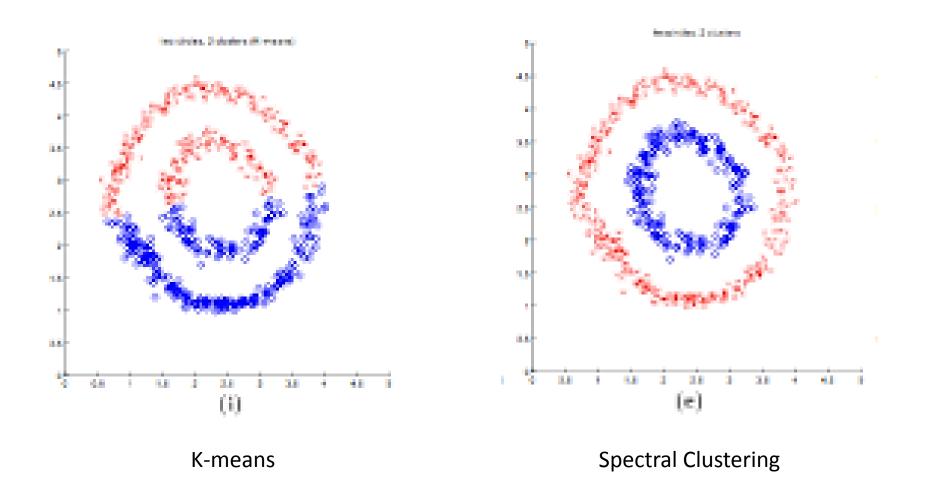


EXAMPLE [NG ET AL. 2001]



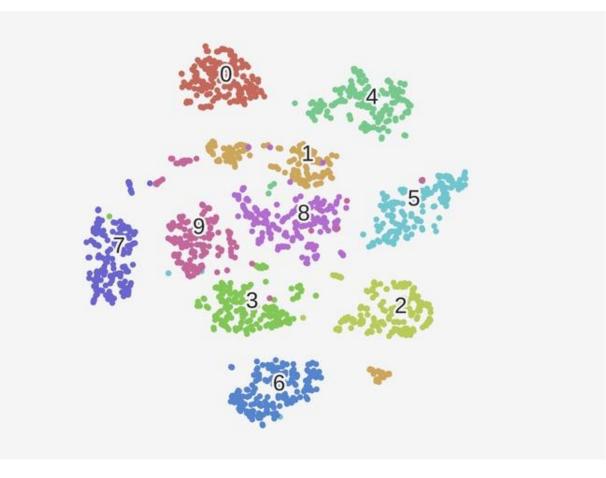


K-MEANS VS. SPECTRAL CLUSTERING



See slides by M.Ester, H.P.Kriegel, J.Sander and Xu

t-distributed stochastic neighbor embedding



T-SNE DISTANCE METRIC

Uses the following density-based (probabilistic) distance metric

$$p_{j|i} = \frac{\exp(-|x_i - x_j|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-|x_i - x_k|^2 / 2\sigma_i^2)}$$

Measures how close x_j is from x_i , considering a Gaussian distribution around x_i with a given variance σ^2_i .

- this variance is different for every point
- t is chosen such that points in dense areas are given a smaller variance than points in sparse areas

T-SNE IMPLEMENTATION

Use a symmetrized version of the conditional similarity:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$

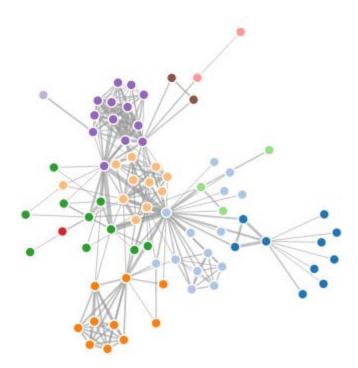
Similarity (distance) metric for map points:

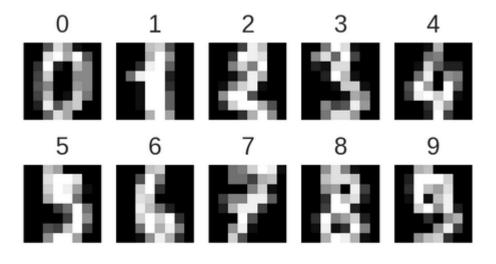
$$q_{ij} = \frac{f(|x_i - x_j|)}{\sum_{k \neq i} f(|x_i - x_k|)} \quad \text{with} \quad f(z) = \frac{1}{1 + z^2}$$

This uses the t-student distribution with one degree of freedom, or Cauchy distribution, instead of a Gaussian distribution

LAYOUT

Can use mass-spring system enforcing minimum of $|p_{ij}-q_{ij}|$





The classic *handwritten digits* datasets. It contains 1,797 images with 8*8=64 pixels each.

See this webpage