

Lecture Topic Projects
1 Intro, schedule, and logistics
2 Data Science components and tasks
3 Data types Project #1 out
4 Introduction to R, statistics foundations
5 Introduction to D3, visual analytics
6 Data preparation and reduction
7 Data preparation and reduction Project #1 due
8 Similarity and distances Project #2 out
9 Similarity and distances

10 Cluster analysis
11 Cluster analysis
12 Pattern mining Project #2 due
13 Pattern mining
14 Outlier analysis
15 Outlier analysis Final Project proposal due
16 Classifiers
17 Midterm
18 Classifiers
19 Optimization and model fitting
20 Optimization and model fitting
21 Causal modeling
22 Streaming data Final Project preliminary report due
23 Text data
24 Time series data
25 Graph data
26 Scalability and data engineering
27 Data journalism
 Final project presentation Final Project slides and final report due

Decision Trees

Naïve Bayesian Classifiers

Support Vector Machines (SVM)

Neural Networks

Model construction: describing a set of predetermined classes
 Each tuple/sample is assumed to belong to a predefined class, as

determined by the class label attribute

 The set of tuples used for model construction: training set

 The model is represented as classification rules, decision trees, or
mathematical formulae

Model usage: for classifying future or unknown objects
 Estimate accuracy of the model

• the known label of test sample is compared with the classified result
from the model

• accuracy rate is the percentage of test set samples that are correctly
classified by the model

• test set is independent of training set, otherwise over-fitting will
occur

Generative

 models how the data was generated in order to categorize the

data

 asks the question: based on my generation assumptions, which

category is most likely to generate this data?

 example: naïve Bayes

 explicitly models the joint probability distribution

Discriminative

 does not care about how the data was generated

 it simply categorizes a given data item

 examples: SVM, neural network, decision tree

Supervised learning (classification)

 Supervision: the training data (observations, measurements, etc.)

are accompanied by labels indicating the class of the observations

 New data is classified based on the training set

Unsupervised learning (clustering)

 The class labels of training data is unknown

 Given a set of measurements, observations, etc. with the aim of

establishing the existence of classes or clusters in the data

Active learning

 Hybrid – ask user to supervise only the “hard” cases

Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’

Classifier

(Model)

Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

Predictive accuracy

Speed and scalability
 time to construct the model

 time to use the model

Robustness
 handling noise and missing values

Scalability
 efficiency in disk-resident databases

Interpretability:
 understanding and insight provided by the model

Goodness of rules
 decision tree size

 compactness of classification rules

Data cleaning

 Preprocess data in order to reduce noise and handle missing

values

Relevance analysis (feature selection)

 Remove the irrelevant or redundant attributes

Data transformation

 Generalize and/or normalize data

Decision tree

 A flow-chart-like tree structure

 Internal node denotes a test on an attribute

 Branch represents an outcome of the test

 Leaf nodes represent class labels or class distribution

Decision tree generation consists of two phases

 Tree construction

• at start, all the training examples are at the root

• partition examples recursively based on selected attributes

 Tree pruning

• identify and remove branches that reflect noise or outliers

Use of decision tree: Classifying an unknown sample

 test the attribute values of the sample against the decision tree

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

age?

overcast

student? credit rating?

no yes fair excellent

<=30 >40

no no yes yes

yes

30..40

Represent the knowledge in the form of IF-THEN rules
 One rule is created for each path from the root to a leaf

 Each attribute-value pair along a path forms a conjunction

 The leaf node holds the class prediction

 Rules are easier for humans to understand

Example

IF age = “<=30” AND student = “no” THEN buys_computer = “no”

IF age = “<=30” AND student = “yes” THEN buys_computer = “yes”

IF age = “31…40” THEN buys_computer = “yes”

IF age = “>40” AND credit_rating = “excellent” THEN buys_computer
= “yes”

IF age = “>40” AND credit_rating = “fair” THEN buys_computer = “no”

Basic algorithm (greedy algorithm)

 tree is constructed in a top-down recursive divide-and-conquer
manner

 at start, all the training examples are at the root

 attributes are categorical (if continuous-valued, they are
discretized in advance)

 examples are partitioned recursively based on selected attributes

 test attributes are selected on the basis of a heuristic or statistical
measure (e.g., information gain)

Conditions for stopping partitioning

 all samples for a given node belong to the same class

 there are no remaining attributes for further partitioning –
majority voting is employed for classifying the leaf

 there are no samples left

Information gain
 all attributes are assumed to be categorical

 can be modified for continuous-valued attributes – discretize

Uses an entropy measure

 pj is the frequency of class j for attribute value vi

 higher values of the entropy imply greater “mixing”

of different classes in that attribute value/level

 a value of 0 implies perfect separation, and, therefore, the largest

possible discriminative power of that value

 overall entropy of an attribute for selection is

Gini index

 definition

 pj is the frequency of class j for attribute value vi

 the index is highest when the distribution is random (1/k)

 zero when the value is an optimal discriminant

 select the attribute with lowest Gini index

 similar to information gain

The change in information entropy H from a prior state to a

state that adds some information

 H(T): entropy of prior state without new information

 H(T/a): entropy of new information given prior state

 IG(T,a): information gain from new information a

Class P: buys_computer = “yes”

Class N: buys_computer = “no”

H(p, n) = I(9, 5) =0.940

Compute the entropy for age:

H(buys_computer/age) = Gain(age) = 0.940 - 0.690 = 0.250

Similarly age is best

age pi ni I(pi, ni)

<=30 2 3 0.971

30…40 4 0 0

>40 3 2 0.971

5 4 5
() (2,3) (4,0) (3,2) 0.69

14 14 14
E age I I I

048.0)_(

151.0)(

029.0)(

ratingcreditGain

studentGain

incomeGain

Fast and easy

 relatively faster learning speed (than other

classification methods)

 convertible to simple and easy to understand

classification rules

 can use SQL queries for accessing databases

 comparable classification accuracy with other methods

One more note – testing and training

 2-to-1 rule: separate training (2/3) and testing (1/3) sets

Given training data D, the a-posteriori probability of a

hypothesis h, P(h|D) follows the Bayes theorem

Naïve Bayes:

 attributes are conditionally independent

)(
)()|(

)|(
DP

hPhDP
DhP

Given a training set, we can compute the probabilities of the
following attributes

A possible question is now
 given these observations X=<x1,…,xk>, what is the probability of

an event or class, such as P(play-tennis|X)

Outlook P N Humidity P N

sunny 2/9 3/5 high 3/9 4/5

overcast 4/9 0 normal 6/9 1/5

rain 3/9 2/5

Temperature Windy

hot 2/9 2/5 true 3/9 3/5

mild 4/9 2/5 false 6/9 2/5

cool 3/9 1/5

The classification problem may be formalized using a-

posteriori probabilities:

 P(C|X) = prob. that the sample tuple

 X=<x1,…,xk> is of class C.

 for example. P(class=N | outlook=sunny, windy=true,…)

Idea:

 assign to sample X the class label C such that P(C|X) is maximal

Bayes theorem:

P(C|X) = P(X|C)·P(C) / P(X)

P(X) is constant for all classes

P(C) = relative frequency of class C samples

C such that P(C|X) is maximum =

 C such that P(X|C)·P(C) is maximum

Problem: computing P(X|C) is unfeasible!

Make the naïve assumption:

 attribute independence P(x1,…,xk|C) = P(x1|C)·…·P(xk|C)

If i-th attribute is categorical:

 P(xi|C) is estimated as the relative frequency of samples having

value xi as i-th attribute in class C

If i-th attribute is continuous:

 P(xi|C) is estimated through a Gaussian density function

Computationally easy in both cases

Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

outlook

P(sunny|p) = 2/9 P(sunny|n) = 3/5

P(overcast|p) = 4/9 P(overcast|n) = 0

P(rain|p) = 3/9 P(rain|n) = 2/5

temperature

P(hot|p) = 2/9 P(hot|n) = 2/5

P(mild|p) = 4/9 P(mild|n) = 2/5

P(cool|p) = 3/9 P(cool|n) = 1/5

humidity

P(high|p) = 3/9 P(high|n) = 4/5

P(normal|p) = 6/9 P(normal|n) = 2/5

windy

P(true|p) = 3/9 P(true|n) = 3/5

P(false|p) = 6/9 P(false|n) = 2/5

P(p) = 9/14

P(n) = 5/14

Wish to find out P(p|X) given an unseen sample condition
X = <rain, hot, high, false>

P(X|p)·P(p) =
 P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) =
 3/9·2/9·3/9·6/9·9/14 = 0.010582

P(X|n)·P(n) =
 P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) =
 2/5·2/5·4/5·2/5·5/14 = 0.018286

Sample X is classified in class n (don’t play)

Assume you (age 40) are told that you have a positive
mammogram finding M+ for breast cancer C+

The probability for actually having breast cancer C+ is
 P(C+|M+) = P(M+|C+) P(C+) / P(M+)

 P(C+|M+) = P(M+|C+) P(C+) / (P(M+|C+) + P(M+|C-)

Using the probabilities:
 p for having breast cancer at age 40 is P(C+) = 0.01

 p for correct detection with M (TP) is P(M+|C+) = 0.8 (sensitivity)

 p for wrong detection (FP) is P(M+|C-) = 0.096 (1-specificity)

Via Bayes’ rule p for actually having breast cancer C+ is
 P(C+|M+) = 0.8 ∙0.01 / (0.8 ∙0.01 + 0.096 ∙0.99) = 0.078 (7.8%)

 turns out 95 out of 100 doctors estimated this probability to be
between 70% and 80%

 solution: use more than one test (here, e.g., use ultrasound, too)

The probability was small since the FP was multiplied by a large
population

 people also do poorly with measure of uncertainty

Visualization can help here

“Improving Bayesian Reasoning: The Effects of Phrasing, Visualization, and Spatial
Ability” by Alvitta Ottley, Evan M. Peck, Lane T. Harrison, Daniel Afergan, Caroline
Ziemkiewicz, Holly A. Taylor, Paul K. J. Han, and Remco Chang, IEEE TVCG, January
2016

… makes computation possible

… yields optimal classifiers when satisfied

… but is seldom satisfied in practice, as attributes (variables)

are often correlated.

Attempts to overcome this limitation:

 Bayesian networks, that combine Bayesian reasoning with causal

relationships between attributes

 Decision trees, that reason on one attribute at the time,

considering most important attributes first

Family

History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

The conditional probability table for the

variable LungCancer

Lots of possible solutions for a, b, c.

Some methods find a separating
hyperplane, but not the optimal one
[according to some criterion of expected goodness]

 E.g., perceptron

Support Vector Machine (SVM) finds an
optimal* solution.

 Maximizes the distance between the
hyperplane and the “difficult points”
close to decision boundary

 One intuition: if there are no points
near the decision surface, then there
are no very uncertain classification
decisions

This line

represents the

decision

boundary:

ax + by − c = 0

Support vectors

Maximizes
margin

SVMs maximize the margin around

the separating hyperplane.

• A.k.a. large margin classifiers

The decision function is fully

specified by a subset of training

samples, the support vectors.

Solving SVMs is a quadratic

programming problem

Seen by many as the most

successful current text classification

method*

*but other discriminative methods

often perform very similarly

Narrower
margin

w: decision hyperplane normal vector

xi: data point i

yi: class of data point i (+1 or -1) NB: Not 1/0

Classifier is: f(xi) = sign(wTxi + b)

Functional margin of xi is: yi (w
Txi + b)

 But note that we can increase this margin simply by scaling w, b….

Functional margin of dataset is twice the minimum

functional margin for any point

 The factor of 2 comes from measuring the whole

width of the margin

39

Distance from example to the separator is

Examples closest to the hyperplane are support vectors.

Margin ρ of the separator is the width of separation between support

vectors of classes.

w

xw b
yr

T +
=

r

ρ x

x′

Derivation of finding r:

Dotted line ’− is perpendicular to

decision boundary so parallel to .

Unit vector is /| |, so line is

r /| |.

’ = – yr /| |.

’ satisfies
T ’+b = 0.

So
T
(–yr /| |) + b = 0

Recall that | | = sqrt(
T

).

So
T

 –yr| | + b = 0

So, solving for r gives:

r = y(
T

 + b)/| |

40

Assume that all data is at least distance 1 from the hyperplane, then

the following two constraints follow for a training set {(xi ,yi)}

For support vectors, the inequality becomes an equality

Then, since each example’s distance from the hyperplane is

The margin is:

wTxi + b ≥ 1 if yi = 1

wTxi + b ≤ −1 if yi = −1

w

2
=r

w

xw b
yr

T +
=

Hyperplane

 wT x + b = 0

Extra scale constraint:

 mini=1,…,n |w
Txi + b| = 1

This implies:

 wT(xa–xb) = 2

 ρ = ||xa–xb||2 = 2/||w||2 wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

42

Then we can formulate the quadratic optimization problem:

A better formulation (min ||w|| = max 1/ ||w||):

Find w and b such that

 is maximized; and for all {(xi , yi)}

wTxi + b ≥ 1 if yi=1; wTxi + b ≤ -1 if yi = -1

w

2
=r

Find w and b such that

Φ(w) =½ wTw is minimized;

and for all {(xi ,yi)}: yi (w
Txi + b) ≥ 1

The solution has the form:

Each non-zero αi indicates that corresponding xi is a support vector.

Then the classifying function will have the form:

Notice that it relies on an inner product between the test point x and
the support vectors xi

 We will return to this later.

Also keep in mind that solving the optimization problem involved
computing the inner products xi

Txj between all pairs of training
points.

w =Σαiyixi b= yk- w
Txk for any xk such that αk 0

f(x) = Σαiyixi
Tx + b

Given a new point x, we can score its

projection onto the hyperplane normal:

 I.e., compute score: wTx + b = Σαiyixi
Tx + b

• Decide class based on whether < or > 0

 Can set confidence threshold t.

-1
0

1

Score > t: yes

Score < -t: no

Else: don’t know

The classifier is a separating hyperplane.

The most “important” training points are the support vectors; they

define the hyperplane.

Quadratic optimization algorithms can identify which training points

xi are support vectors with non-zero Lagrangian multipliers αi.

Both in the dual formulation of the problem and in the solution,

training points appear only inside inner products:

Find α1…αN such that

Q(α) =Σαi - ½ ΣΣαiαjyiyjxi
Txj is maximized and

(1) Σαiyi = 0

(2) 0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b

Datasets that are linearly separable (with some noise) work out great:

But what are we going to do if the dataset is just too hard?

How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

General idea: the original feature space can always be

mapped to some higher-dimensional feature space where

the training set is separable:

Φ: x → φ(x)

 With this mapping, our discriminant function is now:

SV

() () () ()T T

i i

i

g b b

 x w x x x

 No need to know this mapping explicitly, because we only use

the dot product of feature vectors.

 A kernel function is defined as a function that corresponds to

a dot product of two feature vectors in some expanded feature

space:

(,) () ()T

i j i jK x x x x

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

 The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj

 If every datapoint is mapped into high-dimensional space via some
transformation Φ: x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

 A kernel function is some function that corresponds to an inner product in
some expanded feature space.

 Example:

 2-dimensional vectors x=[x1 x2]; let K(xi,xj)=(1 + xi
Txj)

2
,

 Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

 K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1

 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2=

 = [1 xi1
2 √2 xi1xi2 xi2

2 √2xi1 √2xi2]T [1 xj1
2 √2 xj1xj2 xj2

2 √2xj1 √2xj2]

 = φ(xi)
Tφ(xj) where φ(x) = [1 x1

2 √2 x1x2 x2
2 √2x1 √2x2]

 Linear kernel:

2

2
(,) exp()

2

i j

i jK

x x
x x

(,) T

i j i jK x x x x

(,) (1)T p

i j i jK x x x x

0 1(,) tanh()T

i j i jK x x x x

 Examples of commonly-used kernel functions:

 Polynomial kernel:

 Gaussian (Radial-Basis Function (RBF)) kernel:

 Sigmoid:

 In general, functions that satisfy Mercer’s condition can be

kernel functions.

Pros

 prediction accuracy is generally high

 robust, works when training examples contain errors

 output may be discrete, real-valued, or a vector of

several discrete or real-valued attributes

 fast evaluation of the learned target function

Cons

 long training time

 difficult to understand the learned function (weights)

 not easy to incorporate domain knowledge

The n-dimensional input vector x is mapped into variable y

by means of the scalar product and a nonlinear function

mapping

 mk -

f

weighted

sum

Input

vector x

output y

Activation

function

weight

vector w

w0

w1

wn

x0

x1

xn

The ultimate objective of training

 obtain a set of weights that makes almost all the tuples

in the training data classified correctly

Steps

 Initialize weights with random values

 Feed the input tuples into the network one by one

 For each unit

• compute the net input to the unit as a linear combination of all the

inputs to the unit

• compute the output value using the activation function

• compute the error

• update the weights and the bias

Visualization of

Backpropagation

learning

Backprop output layer

Usually just one (i.e., a 2-layer net)

How many hidden units in the layer?

 Too few can’t learn

 Too many poor generalization (overfitting)

Determine your target error rate, e

Success rate is 1- e

Typical training set approx. n/e, where n is the number of

weights in the net

Example:

 e = 0.1, n = 80 weights

 training set size 800

 trained until 95% correct training set classification

 should produce 90% correct classification on testing set (typical)

Need to evaluate classifier in terms of

 effectiveness

 comparing different models

 select the best one for a particular data set

 parameter tuning

 ensemble analysis (see later)

Evaluation is different than testing

 do not tune the parameters with

the test data

Holdout method
 divide the data into training data an test data at ratio 2 to 1

 stratify samples: sample each labeled class separately at the same
% rate and pool the samples

 this way each class is represented both in training and testing

 will be fairer when classes are unevenly distributed

 do this multiple times

Cross-Validation
 divide the n samples into m bins (m is typically 10)

 train with m-1 bins = (m-1)n/m points, test with 1 bin = n/m points

 repeat this by picking different bins for training and testing

 stratify when classes are unevenly populated

 extreme case is leave-one-out cross-validation when m=n

Bootstrap method
 training set samples the data with replacement and has size n

 so some samples may be duplicates and data might be missing

 testing set uses all data and so a sample may be contained in both the
training and the test data

 hence testing will yield a highly optimistic score (the other methods
were more pessimistic)

 probability a specific data point is not included in a sample is (1−1/n)

 probability a specific data point is not included in n samples is (1−1/n)n

 for large n, this expression evaluates to about 1/e

 e is the base of the natural logarithm

 the fraction of the labeled data points included at least once in the
training data is therefore 1−1/e ≈ 0.632

 note: bootstrap is best for small data

What to do when there are multiple classes, k?
 some classifiers like SVM are only defined for two classes

Strategy 1: One-against-the-rest
 form k classifiers, one for each class against all others

 classify a query point for each class j

 if class j wins then it gets a point, else all other classes get a vote

 the class with the highest overall #votes wins

 optionally scale each vote by the classifier’s score and sum

Strategy 2: One-against-one
 train k∙(k-1)/2 pairwise classifiers

 class with highest number of votes wins

 needs more comparisons

 training will be similar since the data is smaller per classifier

Rare classes are usually more expensive when they are missed

 fraud in credit card uses

 highly profitable stock

 but vanilla classifiers usually return the normal class

 need a strategies for better rare class detection

 incorporate the cost of misclassifying a rare class into the classifier

These methods bias the classifier towards the rare class

 that is why you get these annoying credit card blocks

Example reweighting
 reweigh training examples according to class misclassification

costs

Example resampling
 oversample rare classes in proportion to class cost

 or, undersample frequent classes and keep all rare examples

 the latter is more efficient for training

SMOTE algorithm – copes better with bias
 introduces synthetic oversampling

 instead of using only the rare examples which adds too much bias

 generate synthetic data examples on the line segment connecting
each minority example to its nearest normal class neighbor

Size of the data can lead to significant computational problems in

the training phase

 create multiple models based on smaller data and merge them

 eliminate non-important data not relevant to the model early

Decision trees

 Bootstrapped Optimistic Algorithm for Tree construction (BOAT)

 uses b sets of bootstrapped samples

 constructs b decision trees

 checks their splitting criteria and merge them

Scalable SVM

 keep reducing the data during iterative decision boundary construction

 only keep those somewhat close to the current boundary

Motivated by

 different classifiers may make different predictions on test

instances due to the specific characteristics of the classifier

 different classifiers may also have varied sensitivity to the random

artifacts in the training data

Ensemble methods increase the prediction accuracy by

combining the results from multiple classifiers

 each of the k classifiers has a higher bias

 but for the overall classifier the bias as well as the variance 2 is

reduced to 2 /k

Takes k different bootstrapped samples each of size n
 drawn independently

The classifier is trained on each of them
 for a given test instance, the predicted class label is reported by the

ensemble as the majority vote of the different classifiers

Reduces model variance
 but does not reduce the model bias

Random forests
 generalization of the basic bagging method applied to decision trees.

 defined as an ensemble of decision trees each generated by
bootstrapped samples

Create a sequence of classifiers with changing sample weights
 modify the weights for a future classifier based on classifier

performance of previous classifiers

 future models constructed are dependent on the results from
previous models

Use the same algorithm A on a weighted training data set
 incorrectly classified instances in future iterations increase the

relative weight of these instances in the training of the next
classifier

 hypothesize that the errors in these misclassified instances are
caused by classifier bias

 increasing the instance weight of misclassified instances will
result in a new classifier that corrects for the bias on these particular
instances

Well known boosting algorithm
 puts forward the idea of weak classifier

et is the fraction of incorrectly predicted training instances

random chance

The weight function t

 The classifier weight grows exponentially

as the error approaches 0. Better classifiers are given exponentially

more weight.

 The classifier weight is zero if the error rate is 0.5. A classifier with

50% accuracy is no better than random guessing, so we ignore it.

 The classifier weight grows exponentially negative as the error

approaches 1. We give a negative weight to classifiers with worse

than 50% accuracy. “Whatever that classifier says, do the opposite!”.

 use these weights for subsequent classifications

Use the exponential function

 positive exponent for misclassified samples

 negative exponent for correctly classified

samples

Weak

Classifier 1

Weights

Increased

Weak

Classifier 2

Weights

Increased

Weak

Classifier 3

Final classifier is

a combination of weak

classifiers

