


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Data Science components and tasks   
3 Data types Project #1 out  
4 Introduction to R, statistics foundations   
5 Introduction to D3, visual analytics   
6 Data preparation and reduction    
7 Data preparation and reduction  Project #1 due 
8 Similarity and distances Project #2 out 
9 Similarity and distances   

10 Cluster analysis   
11 Cluster analysis   
12 Pattern mining  Project #2 due 
13 Pattern mining   
14 Outlier analysis   
15 Outlier analysis Final Project proposal due 
16 Classifiers   
17 Midterm   
18 Classifiers   
19 Optimization and model fitting   
20 Optimization and model fitting   
21 Causal modeling   
22 Streaming data Final Project preliminary report due 
23 Text data   
24 Time series data   
25 Graph data   
26 Scalability and data engineering   
27 Data journalism   
  Final project presentation  Final Project slides and final report due 



Decision Trees 

Naïve Bayesian Classifiers 

Support Vector Machines (SVM) 

Neural Networks 



Model construction: describing a set of predetermined classes 
 Each tuple/sample is assumed to belong to a predefined class, as 

determined by the class label attribute 

 The set of tuples used for model construction: training set 

 The model is represented as classification rules, decision trees, or 
mathematical formulae 

 

Model usage: for classifying future or unknown objects 
 Estimate accuracy of the model 

• the known label of test sample is compared with the classified result 
from the model 

• accuracy rate is the percentage of test set samples that are correctly 
classified by the model 

• test set is independent of training set, otherwise over-fitting will 
occur 



Generative 

 models how the data was generated in order to categorize the 

data 

 asks the question: based on my generation assumptions, which 

category is most likely to generate this data? 

 example: naïve Bayes 

 explicitly models the joint probability distribution 

 

Discriminative 

 does not care about how the data was generated 

 it simply categorizes a given data item 

 examples: SVM, neural network, decision tree 



Supervised learning (classification) 

 Supervision: the training data (observations, measurements, etc.) 

are accompanied by labels indicating the class of the observations 

 New data is classified based on the training set 

 

Unsupervised learning (clustering) 

 The class labels of training data is unknown 

 Given a set of measurements, observations, etc. with the aim of 

establishing the existence of classes or clusters in the data 

 

Active learning 

 Hybrid – ask user to supervise only the “hard” cases 

 



Training 

Data 

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification 

Algorithms 

IF rank = ‘professor’ 

OR years > 6 

THEN tenured = ‘yes’  

Classifier 

(Model) 



Classifier 

Testing 

Data 

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data 

(Jeff, Professor, 4) 

Tenured? 



Predictive accuracy 

Speed and scalability 
 time to construct the model 

 time to use the model 

Robustness 
 handling noise and missing values 

Scalability 
 efficiency in disk-resident databases  

Interpretability:  
 understanding and insight provided by the model 

Goodness of rules 
 decision tree size 

 compactness of classification rules 

 





Data cleaning 

 Preprocess data in order to reduce noise and handle missing 

values 

 

Relevance analysis (feature selection) 

 Remove the irrelevant or redundant attributes 

 

Data transformation 

 Generalize and/or normalize data 

 



Decision tree  

 A flow-chart-like tree structure 

 Internal node denotes a test on an attribute 

 Branch represents an outcome of the test 

 Leaf nodes represent class labels or class distribution 

Decision tree generation consists of two phases 

 Tree construction 

• at start, all the training examples are at the root 

• partition examples recursively based on selected attributes 

 Tree pruning 

• identify and remove branches that reflect noise or outliers 

Use of decision tree: Classifying an unknown sample 

 test the attribute values of the sample against the decision tree 



age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no



age? 

overcast 

student? credit rating? 

no yes fair excellent 

<=30 >40 

no no yes yes 

yes 

30..40 



Represent the knowledge in the form of IF-THEN rules 
 One rule is created for each path from the root to a leaf 

 Each attribute-value pair along a path forms a conjunction 

 The leaf node holds the class prediction 

 Rules are easier for humans to understand 

 

Example 

IF age = “<=30” AND student = “no”   THEN buys_computer = “no” 

IF age = “<=30” AND student = “yes”  THEN buys_computer = “yes” 

IF age = “31…40”    THEN buys_computer = “yes” 

IF age = “>40”   AND credit_rating = “excellent”   THEN buys_computer 
= “yes” 

IF age = “>40” AND credit_rating = “fair”  THEN buys_computer = “no” 



Basic algorithm (greedy algorithm) 

 tree is constructed in a top-down recursive divide-and-conquer 
manner 

 at start, all the training examples are at the root 

 attributes are categorical (if continuous-valued, they are 
discretized in advance) 

 examples are partitioned recursively based on selected attributes 

 test attributes are selected on the basis of a heuristic or statistical 
measure (e.g., information gain) 

Conditions for stopping partitioning 

 all samples for a given node belong to the same class 

 there are no remaining attributes for further partitioning – 
majority voting is employed for classifying the leaf 

 there are no samples left 



Information gain 
 all attributes are assumed to be categorical 

 can be modified for continuous-valued attributes – discretize  

 

Uses an entropy measure 
 

 pj is the frequency of class j for attribute value vi  

 higher values of the entropy imply greater “mixing”                        

of different classes in that attribute value/level 

 a value of 0 implies perfect separation, and, therefore, the largest 

possible discriminative power of that value 

 overall entropy of an attribute for selection is 



Gini index 

 definition  

 

 pj is the frequency of class j for attribute value vi  

 the index is highest when the distribution is random (1/k) 

 zero when the value is an optimal discriminant  

 select the attribute with lowest Gini index 

 

 

 

 similar to information gain  

 

 



The change in information entropy H from a prior state to a 

state that adds some information 

 

 

 H(T): entropy of prior state without new information 

 H(T/a): entropy of new information given prior state   

  IG(T,a): information gain from new information a   

 

 



Class P: buys_computer = “yes” 

Class N: buys_computer = “no” 

H(p, n) = I(9, 5) =0.940 

 

Compute the entropy for age: 

 

 

H(buys_computer/age) = Gain(age) = 0.940 - 0.690 = 0.250 

 

Similarly                                                             age is best 

 

age pi ni I(pi, ni)

<=30 2 3 0.971

30…40 4 0 0

>40 3 2 0.971

5 4 5
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ratingcreditGain

studentGain

incomeGain



Fast and easy 

 relatively faster learning speed (than other 

classification methods) 

 convertible to simple and easy to understand 

classification rules 

 can use SQL queries for accessing databases 

 comparable classification accuracy with other methods 

 

One more note – testing and training 

 2-to-1 rule: separate training (2/3) and testing (1/3) sets 

 

 





Given training data D, the a-posteriori probability of a 

hypothesis h, P(h|D) follows the Bayes theorem 

 

 

 

Naïve Bayes: 

 attributes are conditionally independent 
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Given a training set, we can compute the probabilities of the 
following attributes 

 

 

 

 

 

 

 

 

A possible question is now 
 given these observations X=<x1,…,xk>, what is the probability of 

an event or class, such as P(play-tennis|X)  

 

Outlook P N Humidity P N

sunny 2/9 3/5 high 3/9 4/5

overcast 4/9 0 normal 6/9 1/5

rain 3/9 2/5

Temperature Windy

hot 2/9 2/5 true 3/9 3/5

mild 4/9 2/5 false 6/9 2/5

cool 3/9 1/5



The classification problem may be formalized using a-

posteriori probabilities: 

   

 P(C|X)  = prob. that the sample tuple    

  X=<x1,…,xk> is of class C. 

 

 for example. P(class=N | outlook=sunny, windy=true,…) 

 

Idea:  

 assign to sample X the class label C such that P(C|X) is maximal 

 



Bayes theorem: 

P(C|X) = P(X|C)·P(C) / P(X) 

 

P(X) is constant for all classes 

P(C) = relative frequency of class C samples 

C such that P(C|X) is maximum =  

           C such that P(X|C)·P(C) is maximum 

 

Problem: computing P(X|C) is unfeasible! 

 



Make the naïve assumption:  

 attribute independence  P(x1,…,xk|C) = P(x1|C)·…·P(xk|C) 

 

If i-th attribute is categorical: 

 P(xi|C) is estimated as the relative frequency of samples having 

value xi as i-th attribute in class C 

 

If i-th attribute is continuous: 

 P(xi|C) is estimated through a Gaussian density function 

 

Computationally easy in both cases 

 



Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N



outlook 

P(sunny|p) = 2/9 P(sunny|n) = 3/5 

P(overcast|p) = 4/9 P(overcast|n) = 0 

P(rain|p) = 3/9 P(rain|n) = 2/5 

temperature 

P(hot|p) = 2/9 P(hot|n) = 2/5 

P(mild|p) = 4/9 P(mild|n) = 2/5 

P(cool|p) = 3/9 P(cool|n) = 1/5 

humidity 

P(high|p) = 3/9 P(high|n) = 4/5 

P(normal|p) = 6/9 P(normal|n) = 2/5 

windy 

P(true|p) = 3/9 P(true|n) = 3/5 

P(false|p) = 6/9 P(false|n) = 2/5 

P(p) = 9/14 

P(n) = 5/14 



Wish to find out P(p|X) given an unseen sample condition     
X = <rain, hot, high, false> 

 

P(X|p)·P(p) =  
 P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = 
 3/9·2/9·3/9·6/9·9/14 = 0.010582 

P(X|n)·P(n) =  
 P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) = 
 2/5·2/5·4/5·2/5·5/14 = 0.018286 

 

Sample X is classified in class n (don’t play) 

 



Assume you (age 40) are told that you have a positive 
mammogram finding M+ for breast cancer C+  

The probability for actually having breast cancer C+ is  
 P(C+|M+) = P(M+|C+) P(C+) / P(M+) 

 P(C+|M+) = P(M+|C+) P(C+) / (P(M+|C+) + P(M+|C-) 

Using the probabilities: 
 p for having breast cancer at age 40 is P(C+) = 0.01 

 p for correct detection with M (TP) is P(M+|C+) = 0.8 (sensitivity) 

 p for wrong detection (FP) is P(M+|C-) = 0.096 (1-specificity) 

Via Bayes’ rule p for actually having breast cancer C+ is  
 P(C+|M+) = 0.8 ∙0.01 / (0.8 ∙0.01 + 0.096 ∙0.99) = 0.078 (7.8%) 

 turns out 95 out of 100 doctors estimated this probability to be 
between 70% and 80% 

 solution: use more than one test (here, e.g., use ultrasound, too) 

 



The probability was small since the FP was multiplied by a large 
population 

 people also do poorly with measure of uncertainty 

 

Visualization can help here 

 

 

 

 

 

 

 
“Improving Bayesian Reasoning: The Effects of Phrasing, Visualization, and Spatial 
Ability” by Alvitta Ottley, Evan M. Peck, Lane T. Harrison, Daniel Afergan, Caroline 
Ziemkiewicz, Holly A. Taylor, Paul K. J. Han, and Remco Chang, IEEE TVCG, January 
2016 

 



… makes computation possible 

… yields optimal classifiers when satisfied 

… but is seldom satisfied in practice, as attributes (variables) 

are often correlated. 

 

Attempts to overcome this limitation: 

 Bayesian networks, that combine Bayesian reasoning with causal 

relationships between attributes 

 Decision trees, that reason on one attribute at the time, 

considering most important attributes first 

 



Family 

History 

LungCancer 

PositiveXRay 

Smoker 

Emphysema 

Dyspnea 

LC 

~LC 

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S) 

0.8 

0.2 

0.5 

0.5 

0.7 

0.3 

0.1 

0.9 

Bayesian Belief Networks 

The conditional probability table for the 

variable LungCancer 





Lots of possible solutions for a, b, c. 

Some methods find a separating 
hyperplane, but not the optimal one 
[according to some criterion of expected goodness] 

 E.g., perceptron 

Support Vector Machine (SVM) finds an 
optimal* solution. 

 Maximizes the distance between the 
hyperplane and the “difficult points” 
close to decision boundary 

 One intuition: if there are no points 
near the decision surface, then there 
are no very uncertain classification 
decisions 

This line 

represents the 

decision 

boundary: 

ax + by − c = 0 



Support vectors 

Maximizes 
margin 

SVMs maximize the margin around 

the separating hyperplane. 

• A.k.a. large margin classifiers 

The decision function is fully 

specified by a subset of training 

samples, the support vectors. 

Solving SVMs is a quadratic 

programming problem 

Seen by many as the most 

successful current text classification 

method*  

*but other discriminative methods 

often perform very similarly 

Narrower 
margin 



w: decision hyperplane normal vector 

xi: data point i 

yi: class of data point i (+1 or -1)     NB: Not 1/0 

Classifier is:    f(xi) =  sign(wTxi + b) 

Functional margin of xi is:   yi (w
Txi + b) 

 But note that we can increase this margin simply by scaling w, b…. 

Functional margin of dataset is twice the minimum 

functional margin for any point 

 The factor of 2 comes from measuring the whole 

width of the margin 
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Distance from example to the separator is  

Examples closest to the hyperplane are support vectors.  

Margin ρ of the separator is the width of separation between support 

vectors of classes. 

w

xw b
yr

T +
=

r 

ρ x 

x′ 

Derivation of finding r: 

Dotted line ’−  is perpendicular to 

decision boundary so parallel to . 

Unit vector is /| |, so line is 

r /| |. 

’ =  – yr /| |.  

’ satisfies 
T ’+b = 0. 

So 
T
(  –yr /| |) + b = 0 

Recall that | | = sqrt(
T

). 

So 
T

 –yr| | + b = 0 

So, solving for r gives: 

r = y(
T

 + b)/| | 
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Assume that all data is at least distance 1 from the hyperplane, then 

the following two constraints follow for a training set {(xi ,yi)}  

 

 

 

 

For support vectors, the inequality becomes an equality 

Then, since each example’s distance from the hyperplane is 

 

 

The margin is: 

 

wTxi + b ≥ 1    if yi = 1 

wTxi + b ≤ −1   if yi = −1 

w

2
=r

w

xw b
yr

T +
=



 

 

Hyperplane  

        wT x + b = 0 

 

Extra scale constraint: 

        mini=1,…,n |w
Txi + b| = 1 

 

This implies: 

        wT(xa–xb) = 2 

  ρ = ||xa–xb||2 = 2/||w||2 wT x + b = 0 

wTxa + b = 1 

wTxb + b = -1 

ρ
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Then we can formulate the quadratic optimization problem:  

 

 

 

 

 
A better formulation (min ||w|| = max 1/ ||w|| ):  

Find w and b such that 

                is maximized; and for all {(xi , yi)} 

wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi = -1 

w

2
=r

Find w and b such that 

Φ(w) =½  wTw  is minimized;  

and for all {(xi ,yi)}:    yi (w
Txi + b) ≥ 1 



The solution has the form:  

 

 

 

Each non-zero αi indicates that corresponding xi is a support vector. 

Then the classifying function will have the form: 

 

 

 

Notice that it relies on an inner product between the test point x and 
the support vectors xi 

 We will return to this later. 

Also keep in mind that solving the optimization problem involved 
computing the inner products xi

Txj between all pairs of training 
points. 

w  =Σαiyixi             b= yk- w
Txk for any xk such that αk 0 

f(x) = Σαiyixi
Tx + b 



Given a new point x, we can score its 

projection onto the hyperplane normal: 

 I.e., compute score: wTx + b = Σαiyixi
Tx + b 

• Decide class based on whether < or > 0 

 Can set confidence threshold t. 

-1 
0 

1 

Score > t: yes 

Score < -t: no 

Else: don’t know 



The classifier is a separating hyperplane. 
 

The most “important” training points are the support vectors; they 

define the hyperplane. 
 

Quadratic optimization algorithms can identify which training points 

xi are support vectors with non-zero Lagrangian multipliers αi.  
 

Both in the dual formulation of the problem and in the solution, 

training points appear only inside inner products:  

Find α1…αN such that 

Q(α) =Σαi  - ½ ΣΣαiαjyiyjxi
Txj is maximized and  

(1)  Σαiyi = 0 

(2)  0 ≤ αi ≤ C for all αi 

f(x) = Σαiyixi
Tx + b 



Datasets that are linearly separable (with some noise) work out great: 

 

 

 

But what are we going to do if the dataset is just too hard?  

 

 

How about … mapping data to a higher-dimensional space: 

0 

x2 

x 

0 x 

0 x 



General idea:   the original feature space can always be 

mapped to some higher-dimensional feature space where 

the training set is separable: 

Φ:  x → φ(x) 



 With this mapping, our discriminant function is now: 

SV

( ) ( ) ( ) ( )T T

i i

i

g b b   


   x w x x x

 No need to know this mapping explicitly, because we only use 

the dot product of feature vectors. 

 A kernel function is defined as a function that corresponds to 

a dot product of two feature vectors in some expanded feature 

space: 

( , ) ( ) ( )T

i j i jK  x x x x
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 The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj 

 If every datapoint is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the inner product becomes: 

K(xi,xj)= φ(xi) 
Tφ(xj) 

 A kernel function is some function that corresponds to an inner product in 
some expanded feature space. 

 Example:  

 2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)

2
, 

 Need to show that K(xi,xj)= φ(xi) 
Tφ(xj): 

 K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1

 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2= 

       = [1  xi1
2  √2 xi1xi2   xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2   xj2

2  √2xj1  √2xj2]  

       = φ(xi) 
Tφ(xj)    where φ(x) =  [1  x1

2  √2 x1x2   x2
2   √2x1  √2x2] 



 Linear kernel: 

2

2
( , ) exp( )

2

i j

i jK



 

x x
x x

( , ) T

i j i jK x x x x

( , ) (1 )T p

i j i jK  x x x x

0 1( , ) tanh( )T

i j i jK   x x x x

 Examples of commonly-used kernel functions: 

 Polynomial kernel: 

 Gaussian (Radial-Basis Function (RBF) ) kernel: 

 Sigmoid: 

 In general, functions that satisfy Mercer’s condition can be 

kernel functions. 





Pros 

 prediction accuracy is generally high 

 robust, works when training examples contain errors 

 output may be discrete, real-valued, or a vector of 

several discrete or real-valued attributes 

 fast evaluation of the learned target function 

Cons 

 long training time 

 difficult to understand the learned function (weights) 

 not easy to incorporate domain knowledge 



The n-dimensional input vector x is mapped into  variable y 

by means of the scalar product and a nonlinear function 

mapping 

 mk - 

f 

weighted  

sum 

Input 

vector x 

output y 

Activation 

function 

weight 

vector w 

 

w0 

w1 

wn 

x0 

x1 

xn 



The ultimate objective of training  

 obtain a set of weights that makes almost all the tuples 

in the training data classified correctly  

Steps 

 Initialize weights with random values  

 Feed the input tuples into the network one by one 

 For each unit 

• compute the net input to the unit as a linear combination of all the 

inputs to the unit 

• compute the output value using the activation function 

• compute the error 

• update the weights and the bias 



Visualization of 

Backpropagation 

learning 

Backprop output layer 







 



Usually just one (i.e., a 2-layer net) 

 

How many hidden units in the layer? 

 Too few  can’t learn 

 Too many  poor generalization (overfitting) 

 



Determine your target error rate, e 

Success rate is 1- e 

Typical training set approx. n/e, where n is the number of 

weights in the net 

Example: 

 e = 0.1, n = 80 weights 

 training set size 800  

 trained until 95% correct training set classification  

 should produce 90% correct classification on testing set (typical) 

 



Need to evaluate classifier in terms of 

 effectiveness 

 comparing different models 

 select the best one for a particular data set 

 parameter tuning 

 ensemble analysis (see later) 

 

Evaluation is different than testing 

 do not tune the parameters with                                                        

the test data  



Holdout method 
 divide the data into training data an test data at ratio 2 to 1 

 stratify samples: sample each labeled class separately at the same 
% rate and pool the samples 

 this way each class is represented both in training and testing 

 will be fairer when classes are unevenly distributed 

 do this multiple times 

 

Cross-Validation 
 divide the n samples into m bins  (m is typically 10) 

 train with m-1 bins = (m-1)n/m points, test with 1 bin = n/m points 

 repeat this by picking different bins for training and testing 

 stratify when classes are unevenly populated  

 extreme case is leave-one-out cross-validation when m=n 

 

 



Bootstrap method 
 training set samples the data with replacement and has size n 

 so some samples may be duplicates and data might be missing 

 testing set uses all data and so a sample may be contained in both the 
training and the test data 

 hence testing will yield a highly optimistic score (the other methods 
were more pessimistic) 

 

 probability a specific data point is not included in a sample is (1−1/n) 

 probability a specific data point is not included in n samples is (1−1/n)n 

 for large n, this expression evaluates to about 1/e 

 e is the base of the natural logarithm 

 the fraction of the labeled data points included at least once in the 
training data is therefore 1−1/e ≈ 0.632 

 

 note: bootstrap is best for small data 

 



What to do when there are multiple classes, k?  
 some classifiers like SVM are only defined for two classes 

 

Strategy 1: One-against-the-rest 
 form k classifiers, one for each class against all others 

 classify a query point for each class j  

 if class j wins then it gets a point, else all other classes get a vote 

 the class with the highest overall #votes wins 

 optionally scale each vote by the classifier’s score and sum 

 

Strategy 2: One-against-one 
 train k∙(k-1)/2 pairwise classifiers 

 class with highest number of votes wins  

 needs more comparisons 

 training will be similar since the data is smaller per classifier 



Rare classes are usually more expensive when they are missed 

 fraud in credit card uses 

 highly profitable stock 

 but vanilla classifiers usually return the normal class 

 need a strategies for better rare class detection 

 incorporate the cost of misclassifying a rare class into the classifier 

 

These methods bias the classifier towards the rare class  

 that is why you get these annoying credit card blocks 



Example reweighting 
 reweigh training examples according to class misclassification 

costs 

 

Example resampling 
 oversample rare classes in proportion to class cost 

 or, undersample frequent classes and keep all rare examples 

 the latter is more efficient for training 

 

SMOTE algorithm – copes better with bias 
 introduces synthetic oversampling 

 instead of using only the rare examples which adds too much bias 

 generate synthetic data examples on the line segment connecting 
each minority example to its nearest normal class neighbor 

 



Size of the data can lead to significant computational problems in 

the training phase 

 create multiple models based on smaller data and merge them 

 eliminate non-important data not relevant to the model early 

 

Decision trees 

 Bootstrapped Optimistic Algorithm for Tree construction (BOAT)  

 uses b sets of bootstrapped samples 

 constructs b decision trees 

 checks their splitting criteria and merge them 

 

Scalable SVM 

 keep reducing the data during iterative decision boundary construction 

 only keep those somewhat close to the current boundary  

 



Motivated by 

 different classifiers may make different predictions on test 

instances due to the specific characteristics of the classifier 

 different classifiers may also have varied sensitivity to the random 

artifacts in the training data 

 

Ensemble methods increase the prediction accuracy by 

combining the results from multiple classifiers 

 each of the k classifiers has a higher bias 

 but for the overall classifier the bias as well as the variance 2  is 

reduced to 2 /k 

 





Takes k different bootstrapped samples each of size n  
 drawn independently 

 

The classifier is trained on each of them 
 for a given test instance, the predicted class label is reported by the 

ensemble as the majority vote of the different classifiers 

 

Reduces model variance 
 but does not reduce the model bias 

 

Random forests 
 generalization of the basic bagging method applied to decision trees. 

 defined as an ensemble of decision trees each generated by 
bootstrapped samples 

 



Create a sequence of classifiers with changing sample weights 
 modify the weights for a future classifier based on classifier 

performance of previous classifiers  

 future models constructed are dependent on the results from 
previous models 

 

Use the same algorithm A on a weighted training data set 
 incorrectly classified instances in future iterations increase the 

relative weight of these instances in the training of the next 
classifier 

 hypothesize that the errors in these misclassified instances are 
caused by classifier bias 

 increasing the instance weight of misclassified instances will 
result in a new classifier that corrects for the bias on these particular 
instances 



Well known boosting algorithm 
 puts forward the idea of weak classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

et is the fraction of incorrectly predicted training instances 

random chance 



The weight function t 

 The classifier weight grows exponentially                                                      

as the error approaches 0. Better classifiers are given exponentially 

more weight. 

 The classifier weight is zero if the error rate is 0.5. A classifier with 

50% accuracy is no better than random guessing, so we ignore it. 

 The classifier weight grows exponentially negative as the error 

approaches 1. We give a negative weight to classifiers with worse 

than 50% accuracy. “Whatever that classifier says, do the opposite!”. 

 use these weights for subsequent classifications 

 

Use the exponential function  

 positive exponent for misclassified samples 

 negative exponent for correctly classified                                        

samples  



Weak  

Classifier 1 



Weights 

Increased 



Weak  

Classifier 2 



Weights 

Increased 



Weak  

Classifier 3 



Final classifier is  

a combination of weak 

classifiers 




