Medical Imaging

Ultrasound Imaging

Klaus Mueller

Computer Science Department

Stony Brook University

Overview

Advantages

- non-invasive
- inexpensive
- portable
- excellent temporal resolution

Disadvantages

- noisy
- low spatial resolution

Samples of clinical applications

- echo ultrasound
 - cardiac
 - fetal monitoring
- Doppler ultrasound
 - blood flow
- ultrasound CT
 - mammography

US guided biopsy

Doppler effect

History

Milestone applications:

- publication of The Theory of Sound (Lord Rayleigh, 1877)
- discovery of piezo-electric effect (Pierre Curie, 1880)
 - enabled generation and detection of ultrasonic waves
- first practical use in World War One for detecting submarine.

- non-destructive testing of metals (airplane wings, bridges)
- seismology
- first clinical use for locating brain tumors (Karl Dussik, Friederich Dussik, 1942)

- in real time by Siemens device in 1965
- electronic beam-steering using phased-array technology in 1968
- popular technique since mid-70s
- substantial enhancements since mid-1990

Pierre Curie 1859 - 1906

Karl Theodore Dussik

Ultrasonic Waves

US waves are longitudinal compression waves

- particles never move far
- transducer emits a sound pulse which compresses the material
- elasticity limits compression and extends it into a rarefaction
- rarefaction returns to a compression
- this continues until damping gradually ends this oscillation

- ultrasound waves in medicine > 2.5 MHz
- humans can hear between 20 Hz and 20 kHz (animals more)

Generation of Ultrasonic Waves

Via piezoelectric crystal

- deforms on application of electric field → generates a pressure wave
- induces an electric field upon deformation ← detects a pressure wave
- such a device is called *transducer*

Wave Propagation

Two equations

• wave equation:

$$\nabla^2 \Delta p = \frac{1}{c_0} \frac{\partial^2 \Delta p}{\partial^2 t^2} \qquad c_0 = \sqrt{\frac{1}{\rho_0 \beta_{s0}}}$$

 Δp : acoustic pressure, ρ_0 : acoustic density, β_{s0} : adiabatic compressibility

• Eikonal equation:

$$\frac{\partial^2 t}{\partial^2 x} + \frac{\partial^2 t}{\partial^2 y} + \frac{\partial^2 t}{\partial^2 z} = \frac{1}{F^2(x, y, z)}$$

1/F: "slowness vector", inversely related to acoustic velocity v

- models a surface of constant phase called the wave front
- sound rays propagate normal to the wave fronts and define the direction of energy propagation.

Effects in Homogeneous Media

Attenuation

models the loss of energy in tissue

$$H(f,z) = e^{-a_0 f^n z}$$

f: frequency, typically n=1, z: depth,
a₀: attenuation coefficient of medium,

Non-linearity

- wave equation was derived assuming that ∆p was only a tiny disturbance of the static pressure
- however, with increasing acoustic pressure, the wave changes shape and the assumption is violated

Diffraction

- complex interference pattern greatest close to the source
- further away point sources add constructively

simulation with a circular planar source

Effects in Non-Homogeneous Media (1)

Reflection and refraction

 at a locally planar interface the wave's frequency will not change, only its speed and angle

$$\frac{\sin \theta_i}{c_1} = \frac{\sin \theta_r}{c_1} = \frac{\sin \theta_t}{c_2}$$

• for $c_2 > c_1$ and $\theta_i > \sin^{-1}(c_1/c_2)$ the reflected wave will not be in phase when

$$\cos \theta_t = \sqrt{1 - \left(\frac{c_2}{c_1} \sin \theta_i\right)^2}$$

is complex

• the amplitude changes as well: T+R=1, $Z=\rho v$

$$T = \frac{A_t}{A_i} = \frac{2Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t} \qquad R = \frac{A_r}{A_i} = \frac{Z_2 \cos \theta_i - Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t}$$

Effects in Non-Homogeneous Media (2)

Scattering

small object $<< \lambda$

- if the size of the scattering object is $<< \lambda$ then get constructive interference at a far-enough receiver P
- if not, then need to model scattering as many point scatterers for a complex interference pattern

large object

Data Acquisition: A-Mode

'A' for Amplitude

Simplest mode (no longer in use), basically:

clap hands and listen for echo:

distance =
$$\frac{\text{time expired} \cdot \text{speed of sound}}{2}$$

 time and amplitude are almost equivalent since sound velocity is about constant in tissue

Problem: don't know where sound bounced off from

- direction unclear
- shape of object unclear
- just get a single line

Data Acquisition: M-Mode

'M' for Motion

Repeated A-mode measurement

Very high sampling frequency: up to 1000 pulses per second

- useful in assessing rates and motion
- still used extensively in cardiac and fetal cardiac imaging

Data Acquisition: B-Mode

'B' for Brightness

An image is obtained by translating or tilting the transducer

fetus

normal heart

continuous

Image Reconstruction (1)

Filtering

remove high-frequency noise

Envelope correction

removes the high frequencies of the RF signal

Attenuation correction

- correct for pulse attenuation at increasing depth
- use exponential decay model

Image Reconstruction (2)

Log compression

brings out the low-amplitude speckle noise

 speckle pattern can be used to distinguish different tissue

Acquisition and Reconstruction Time

Typically each line in an image corresponds to 20 cm

- velocity of sound is 1540 m/s
 - \rightarrow time for line acquisition is 267 µs
- an image with 120 lines requires then about 32 ms
 - → can acquire images at about 30 Hz (frames/s)
- clinical scanners acquire multiple lines simultaneously and achieve 70-80 Hz

Doppler Effect: Introduction

The Doppler effect:

As the police car approaches the sound waves are compressed and the pitch rises. As it recedes the sound waves are stretched and the pitch decreases.

3 2000 Jim Doyle

Doppler Effect: Fundamentals (1)

Assume an acoustic source emits a pulse of N oscillation within time Δt_T

- a point scatterer P_s travels at axial velocity $v_{a:}$
- the locations of the wave and the scatterer are: $P_b(t) = ct$ $P_s(t) = d_0 + v_a t$
- the start of the wave meets P_s at:

$$P_b(t_{ib}) = P_s(t_{ib}) \rightarrow t_{ib} = \frac{d_0}{c - v_a}$$

the end of the wave meets P_s at:

$$P_b(t_{ie}) = P_s(t_{ie}) \rightarrow t_{ie} = \frac{d_0 + c\Delta t_T}{c - v_a} = t_{ib} + \frac{c}{c - v_a} \Delta t_T$$

- the start of the wave meets the transducer at $t_{rb} = 2t_{ib}$
- the end of the wave meets the transducer at $t_{re} = 2t_{ie} \Delta t_T$

Doppler Effect: Fundamentals (2)

Received pulse (*N* oscillations)

- the duration of the received pulse is $\Delta t_R = t_{re} t_{rb} = (\frac{2c}{c-v} 1)\Delta t_T$
- writing it as frequencies $f_T = \frac{N}{\Delta t_T}$ $f_R = \frac{N}{\Delta t_R}$ the Doppler frequency is then $f_D = f_R f_T = \frac{-2v_a}{c + v_a} f_T \approx \frac{-2v_a \cos \theta}{c} f_T$
- to hear this frequency, add it to some base frequency f_b
- finally, to make the range smaller, f_d may have to be scaled

Example:

 assume a scatterer moves away at 0.5 m/s, the pulse frequency is 2.5 MHz, and a base frequency of 5 kHz, then the shift is an audible 5 kHz - 1.6 kHz = 3.4 kHz

Doppler: CW

'CW' for Continuous Wave

Compare frequency of transmitted wave f_T with frequency of received wave f_R

- the Doppler frequency is then: $f_D = f_R f_T = \frac{-2v_a}{c + v_a} f_T \approx \frac{-2|v_a|\cos\theta}{c} f_T$
- Doppler can be made audible, where pitch is analog to velocity

Doppler: PW (1)

'PW' for Pulsed Wave

Does not make use of the Doppler principle

• instead, received signal is assumed to be a scaled, delayed replica of the transmitted one

$$s(t) = A\sin(2\pi f_T(t - \Delta t))$$

∆t is the time between transmission and reception of the pulse it depends on the distance between transducer and scatterer

• in fact, we only acquire one sample of each of the received pulses, at t_R :

$$s(t_R) = A\sin(2\pi f_T(t_R - \Delta t))$$

- now, if the scatterer moves away at velocity v_a , then the distance increases with $v_a T_{PRF}$ (T_{PRF} : pulse repetition period)
- this increases the time Δt (or decreases if the scatterer comes closer)

Doppler: PW (2)

Thus, the sampled sequence s_i is:

$$s_j = A\sin(-2\pi f_T(j \cdot \frac{2 \cdot v_a T_{PRF}}{c}) + B)$$

• therefore, the greater v_a , the higher the frequency of the sampled sinusoid:

$$f_D = -\frac{2v_a}{c} f_T$$

• to get direction information, one must sample more than once per pulse (twice per half oscillation):

Doppler: PW (3)

Color Flow Imaging: Technique

Calculates the phase shift between two subsequently received pulses

$$\Delta \varphi = 2\pi f_T (\frac{2 \cdot v_a T_{PRF}}{c})$$

• measure the phase shift by sampling two subsequent pulses at two specific time instances t_{R1} and t_{R2}

- since this can become noisy, usually the results of 3-7 such samplings (pulses) are averaged
- divide the acquired RF line into segments (range gates) allows velocities to be obtained at a number of depths
- acquiring along a single line gives a M-mode type display
- acquiring along multiple lines enables a B-mode type display

red: moving toward transducer

blue: moving away from trasnducer

Ultrasound Equipment

Left: Linear array transducer.

Right: Phased array transducer

commercial echocardiographic scanner

Ultrasound Applications (1)

Left: Normal cranial ultrasound.

Right: Fluid filled cerebral cavities on both sides as a result of an intraventricular haemorrhage

Ultrasound Applications (2)

Left: normal lung,

Right: pleural effusion

Ultrasound Applications (3)

Left: normal liver

Right: liver with cyst

Ultrasound Applications (4)

Left: prostate showing a hypoechoic lesion suspicious for cancer

Right: with biopsy needle

Ultrasound Applications (5)

Atrial septal defect (ASD)

Ultrasound Applications (6)

Doppler color flow image of a patient with mitral regurgitation in the left atrium. The bright green color corresponds to high velocities in mixed directions, due to very turbulent flow leaking through a small hole in the mitral valve.