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Introduction 

Sampling is the process of discretizing a continuous function 
into an array/matrix of data points 

• the matrix values are some function of the sampled real-life object 

• this function is given by the sampling filter (more to follow) 
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Importance of the Fourier Domain 

Visual artifacts are also often easier understood in the Fourier 
domain 

We can use the Fourier domain to: 

• gain insight into the spatial / temporal frequency content of the data 
(see last lecture) 

• from this, gain insight into how much a continuous signal must be 
sampled when it is discretized 

• design proper filters to avoid an important phenomenon: aliasing 

We usually do not use the Fourier domain to: 

• perform the actual signal filtering, sampling, resampling, 
reconstruction (there are exceptions, however) 

• these real operations are usually performed in the original signal 
domain (spatial, temporal) 

 



Sampling: Spatial Domain 

Definition: 

• a continuous signal s(x) is measured at fixed instances spaced apart 
by an interval Dx  

• the data points so obtained form a discrete signal ss[nDx] = ss(nDx)   

• here, Dx is called the sampling period (distance), and K = 1/Dx the 
sampling frequency 

 

 

 

 

 

 

Sampling is the multiplication of the signal with an impulse 
train: 
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Sampling: Frequency Domain 

Using the convolution theorem of the Fourier transform: 

 

 

 

 

 

• the smaller Dx the wider K (recall the Fourier scaling theorem) 

• sampling (the convolution of TTT(k) and S(k)) replicates the signal 
spectrum S(k) at integer multiples of sampling frequency K 

 

 

 

 

• kmax is maximum frequency occuring in the signal 
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Aliasing 

Terminology: 

 

 

 

 

 

However, if we choose K < 2 kmax the aliases overlap and we 
get aliasing  

• what does aliasing look like? 

• let’s see some examples  
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Aliasing: A Commonly Observed Phenomenon 

Ever wondered about the wagon wheels in old Western 
movies: 



Aliasing: A Commonly Observed Phenomenon 



Aliasing: A More Analytical Example (1) 
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Aliasing: A More Analytical Example (2) 



Aliasing: A More Analytical Example (3) 



Aliasing: A More Analytical Example (4) 



Aliasing: Prevention 

So must choose: 

 

In other words: 

• the samples only uniquely define the signal if: 

 

 

 

 

 

 

 

 

 

 

• this assumes that the signal is band-limited (S(k)=0 above Ks 
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Anti-Aliasing 

Usually signals are not band-limited 

• recall the infinite spectrum of a sharp edge (for example: a bone) 

To prevent the inevitable aliasing we must perform anti-
aliasing before sampling the signal  

• for example: when digitizing a radiograph of a bone or a chest 

Anti-aliasing is done by low-pass filtering (blurring) 

• band-limit the signal prior to sampling 

• we shall see later, how  
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Higher Dimensions 

All of these concepts readily extend to higher dimensions 

 

 

 

 

 

 

Main spectrum (S(k,l) must fit into the center box to prevent 
overlap with side-spectra (and aliasing) 
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Anti-Aliasing: Practical Examples (1)  



Anti-Aliasing: Practical Examples (2) 



Image Representation 

We know that a discrete image is a matrix of pixels 

• do keep this in mind, however: 

 

 

 

 

So, why do we not see isolated dots on the screen or paper? 

• a monitor or printer “splats” the pixels onto the screen or paper. 

• each pixels assumes the shape of a                                               
Gaussian 

 

 

• the Gaussians blend together and form                                                        
a continuous image   

an image is NOT a matrix 

of solid squares 

rather, each pixel is a Dirac 

impulse, with the pixel’s 

value as its height 



Interpolation 

Often we want to estimate the formerly continuous function from the 
discretized function represented by the matrix of sample points 

This is done via interpolation 

Concept: 

 

 

 

 

 

 

• center the interpolation kernel (filter) h at the sample position and 
superimpose it onto the grid 

• multiply the values of the grid samples with the kernel value at the 
superimposed position 

• add all the products  this gives the value of the newly interpolated 
sample 

• in the shown case: 

                        f(0.2) = h(-0.2) f(0) + h(-1.2) f(-1) + h(0.8) f(1) + h(1.8) f(2) 



Interpolation Kernels (1) 



Interpolation Kernels (2) 

 

 

 

 

 

 

An additional popular filter is the Gaussian function 

Discussion: 

• nearest neighbor is fastest to compute (just one add), gives sharp edges, but 
sometimes jagged lines 

• linear interpolation takes 2 mults and 1 add and gives a piecewise smooth 
function 

• cubic filter takes 4 mults and 3 adds, but gives an overall smooth interpolated 
function 

• linear interpolation is most popular in many application 



Interpolation in Higher Dimensions 



Interpolation Quality 

Example: 

• resampling of a portion of the star image onto a 

high resolution grid 

• magnification factor ~20 

 



Computation of the Fourier Transform 

The analytical form of the Fourier transform (and its laws) is 
convenient for theoretical, fundamental considerations 

• examples: filter design, sampling rates, image resolutions 

But in practical applications (for example, low-passing and 
other filtering) we require a means to compute a discretized 
signal’s Fourier transform:  

 

 

 

 

Assume M=N, then this is an O(N4) algorithm 

• the Fast Fourier Transform (FFT) brings this down to O(N2logN)  
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