Introduction to Medical Imaging

Sampling

Klaus Mueller

Computer Science Department

Stony Brook University

Introduction

Sampling is the process of discretizing a continuous function into an array/matrix of data points

- the matrix values are some function of the sampled real-life object
- this function is given by the sampling filter (more to follow)

sampling result

sampling the object

Importance of the Fourier Domain

Visual artifacts are also often easier understood in the Fourier domain

We can use the Fourier domain to:

- gain insight into the spatial / temporal frequency content of the data (see last lecture)
- from this, gain insight into how much a continuous signal must be sampled when it is discretized
- design proper filters to avoid an important phenomenon: aliasing

We usually do not use the Fourier domain to:

- perform the actual signal filtering, sampling, resampling, reconstruction (there are exceptions, however)
- these real operations are usually performed in the original signal domain (spatial, temporal)

Sampling: Spatial Domain

Definition:

- a continuous signal s(x) is measured at fixed instances spaced apart by an interval Δx
- the data points so obtained form a discrete signal $s_s[n\Delta x] = s_s(n\Delta x)$

• here, Δx is called the sampling period (distance), and K = $1/\Delta x$ the

sampling frequency

Sampling is the multiplication of the signal with an impulse train:

$$s_s(x) = s(x) \cdot TTT(x)$$

$$TTT(x) = \sum_{n=0}^{\infty} \delta(x - n\Delta x)$$
, $TTT(x)$ is the comb function

Sampling: Frequency Domain

Using the convolution theorem of the Fourier transform:

$$S_s(k) = S(k) * F\{TTT(x)\}, \text{ where } F\{TTT(x)\} = K \sum_{l=-\infty}^{\infty} \delta(k-lK)$$

- the smaller Δx the wider K (recall the Fourier scaling theorem)
- sampling (the convolution of TTT(k) and S(k)) replicates the signal spectrum S(k) at integer multiples of sampling frequency K

• k_{max} is maximum frequency occuring in the signal

Aliasing

Terminology:

However, if we choose K < 2 k_{max} the aliases overlap and we get aliasing aliased S(k)

- what does aliasing look like?
- let's see some examples

Aliasing: A Commonly Observed Phenomenon

Ever wondered about the wagon wheels in old Western movies:

Aliasing: A Commonly Observed Phenomenon

• Wagon wheel in old Western movies:

wheel appears to turn counter-clockwise at a slow rate...

camera shutter open

dot only drawn for illustrative purposes

but in reality turns clockwise at a much faster rate...

Aliasing: A More Analytical Example (1)

- Frequency of original signal: 0.5 (oscillations per time unit)
- Sampling frequency: 0.5 (samples per time unit) \rightarrow original signal can not be recovered

Aliasing: A More Analytical Example (2)

- Frequency of original signal: 0.5 (oscillations per time unit)
- Sampling frequency: 0.7 (samples per time unit)
- Looking at the sample points x[n], they appear to originate from a sine wave x_{c_aliased} of much lower frequency → again, the original sine wave is lost and can not be recovered

Aliasing: A More Analytical Example (3)

- Frequency of original signal: 0.5 (oscillations per time unit)
- Sampling frequency: 1.0 (sample per time unit) \rightarrow original signal can be recovered
- We learn that we need to sample each oscillation period twice for good reconstruction

 $\begin{array}{c} \text{non-aliased signal } x_{c_non_aliased} \\ \text{reconstructed from the sample points } x[n] \end{array}$

Aliasing: A More Analytical Example (4)

- In practice, it is best to use more than 2 samples per oscillation period
 - else one may get wrong reconstructions for some special sample alignments

- Thus, to be on the safe side:
 - sample each oscillation period more than twice
- Next: a closer look onto the whole process

Aliasing: Prevention

So must choose:

$$K > K_s = 2 \cdot k_{\text{max}}$$
, K_s is the Nyquist rate

In other words:

the samples only uniquely define the signal if:

$$S(k) = 0 \quad \forall |k| > k_{\text{max}}$$

$$\frac{1}{\Delta x} > 2k_{\text{max}} = K_s$$

$$S(k)$$

$$S(k)$$

$$K_s$$

$$2k_{\text{max}}$$

• this assumes that the signal is band-limited (S(k)=0 above K_s

Anti-Aliasing

Usually signals are not band-limited

recall the infinite spectrum of a sharp edge (for example: a bone)

To prevent the inevitable aliasing we must perform antialiasing before sampling the signal

• for example: when digitizing a radiograph of a bone or a chest

Anti-aliasing is done by low-pass filtering (blurring)

band-limit the signal prior to sampling

we shall see later, how

Higher Dimensions

All of these concepts readily extend to higher dimensions

Main spectrum (S(k, l)) must fit into the center box to prevent overlap with side-spectra (and aliasing)

$$\frac{1}{\Delta x} > 2 \cdot k_{x \max} \qquad \frac{1}{\Delta y} > 2 \cdot k_{y \max}$$

Anti-Aliasing: Practical Examples (1)

Anti-Aliasing: Practical Examples (2)

Nine survivors, 1 body removed from Cuban plane in Gulf of Mexico

Nine survivors and one body have been pulled from the wreckage of a Cuban airplane by a merchant ship in the Gulf of Mexico, about 60 miles (96 kilometers) off the western tip of Cuba, the U.S. Coast Guard said. The rescue at 1:45 p.m. Tuesday came a few hours after officials in Havana, Cuba, reported the plane hijacked.

FULL STORY A

- Play related video: The sequence of events leading to the rescue
- Injured Cuban flown to Florida will be allowed to seek asylum
- Major features of Antonov An-2 planes
- History: Leaving Cuba by air
- Message Board: U.S./Cuba relations
- Message Board: Air safety

original

looks more pleasing

We observe: Anti-aliasing (i.e., blurring, lowpassing) must be applied before sampling

Image Representation

We know that a discrete image is a matrix of pixels

do keep this in mind, however:

an image is NOT a matrix of solid squares

0 0 0 0 0 0

So, why do we not see isolated dots on the screen or paper?

- a monitor or printer "splats" the pixels onto the screen or paper.
- each pixels assumes the shape of a Gaussian

 the Gaussians blend together and form a continuous image

Interpolation

Often we want to estimate the formerly continuous function from the discretized function represented by the matrix of sample points

This is done via interpolation

Concept:

- center the interpolation kernel (filter) h at the sample position and superimpose it onto the grid
- multiply the values of the grid samples with the kernel value at the superimposed position
- add all the products → this gives the value of the newly interpolated sample
- in the shown case:

$$f(0.2) = h(-0.2) f(0) + h(-1.2) f(-1) + h(0.8) f(1) + h(1.8) f(2)$$

Interpolation Kernels (1)

Nearest Neighbor:

- simply pick the value of the nearest grid point: f(0.2) = f(trunc(0.2+0.5)) = f(trunc(0.2+0.5))
- Linear filter:

- use a linear combination of the two neighboring grid values: $f(0.2) = 0.2 \cdot f(1) + 0.8 \cdot f(0)$

Interpolation Kernels (2)

Cubic filter:

An additional popular filter is the Gaussian function

Discussion:

- nearest neighbor is fastest to compute (just one add), gives sharp edges, but sometimes jagged lines
- linear interpolation takes 2 mults and 1 add and gives a piecewise smooth function
- cubic filter takes 4 mults and 3 adds, but gives an overall smooth interpolated function
- linear interpolation is most popular in many application

Interpolation in Higher Dimensions

 $\rightarrow f(x, y) = f(P_{v.u}) = (1-v) (1-u) f(P_{0.0}) + (1-v) u f(P_{0.1}) + v (1-u) f(P_{1.0}) + v u f(P_{1.1})$

All interpolation kernels shown here are separable

$$h(x, y) = h(x) \cdot h(y)$$
 and $h(x, y, z) = h(x) \cdot h(y) \cdot h(z)$

· Linear interpolation

assume:
$$grid distance = 1.0$$

P_u is the location of the sample value

P₀ and P₁ are neighboring grid points

then:
$$u = P_u - P_0$$

$$f(x) = f(P_u) = (1 - u) \cdot f(P_0) + u \cdot f(P_1)$$

Bilinear interpolation

$$f(P_{0,u}) = (1 - u) \cdot f(P_{0,0}) + u \cdot f(P_{0,1})$$

$$f(P_{1,u}) = (1 - u) \cdot f(P_{1,0}) + u \cdot f(P_{1,1})$$

$$f(P_{v,u}) = (1 - v) \cdot f(P_{0,u}) + v \cdot f(P_{1,u})$$

Interpolation Quality

Example:

- resampling of a portion of the star image onto a high resolution grid
- magnification factor ~20

Computation of the Fourier Transform

The analytical form of the Fourier transform (and its laws) is convenient for theoretical, fundamental considerations

examples: filter design, sampling rates, image resolutions

But in practical applications (for example, low-passing and other filtering) we require a means to compute a discretized signal's Fourier transform:

$$S(m\Delta k_x, n\Delta k_y) = \sum_{q=0}^{N-1} \sum_{p=0}^{M-1} s(p\Delta x, p\Delta y) e^{-2\pi i (\frac{mp}{M} + \frac{nq}{N})}$$

$$S(p\Delta x, q\Delta y) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} S(m\Delta k_x, n\Delta k_y) e^{2\pi i (\frac{mp}{M} + \frac{nq}{N})}$$

Assume M=N, then this is an $O(N^4)$ algorithm

the Fast Fourier Transform (FFT) brings this down to O(N²logN)