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Statistical Techniques 

Algebraic/gradient methods do not model 
statistical effects in the underlying data 

• this is OK for CT (within reason) 

However, the emission of radiation from 
radionuclides is highly statistical 

• the direction is chosen at random 

• similar metabolic activities may not emit the 
same radiation 

• not all radiation is actually collected 
(collimators reject many photons) 

• in low-dose CT, noise is also a significant 
problem  

Need a reconstruction method that can 
accounts for these statistical effects 

• Maximum Likelihood – Expectation 
Maximization (ML-EM)  is one such method 



Overall Concept of ML-EM 

Setup: 

• there are three types of variables: observed data, unobserved data, 
and model parameters 

• due to this, there is a many-to-one mapping of parameters  data  

Goal: 

• estimate the model parameters using the observed data 

Solution: 

• use an iterative solver that finds an optimal solution (but not 
necessarily an accurate one) 

• possible algorithms are: Newton-type (for example, conjugate 
gradient), ART, EM 

• EM does not require the computation of gradients and it is also stable 
(will always converge) 

• EM will converge to a solution of maximum likelihood (but not 
necessarily the global maximum)  



Overall Concept of ML-EM 

Initialization step: choose an initial setting of the model 
parameters 

Then proceed to EM, which has two steps, executed 
iteratively: 

• E (expectation) step: estimate the unobserved data from the current 
estimate of the model parameters and the observed data 

• M (maximization) step: compute the maximum-likelihood estimate of 
the model parameters using the estimated unobserved data 

Stop when converged    

Initialize model parameters p 

E-Step: estimate unobserved data x using p and observed data y  

M-Step: compute ML-estimate of p using x 

return if converged 



The Poisson Distribution 

Also called the law of rare events 

• it is the binomial distribution of k as the number of trials n goes to infinity 

 

 

 

• with p =l / n 

 

 

 l: expected number of events (the mean)                                                                      

     in a given time interval 

Some examples for Poisson-distributed events: 

• the number of phone calls at a call center per minute 

• the number of spelling errors a secretary makes while typing a single page 

• the number of soldiers killed by horse-kicks each year in each corps in the 
Prussian cavalry 

• the number of positron emissions in a radio nucleotide in PET and SPECT 

• the number of annihilation events in PET and SPECT 

k 



Relation to Functional Imaging 

The observed data, y(d), are the detector readings 

The unobserved data, x(b), are the photon emission activities 
in the pixels (the tissue) 

• these give rise to the detector readings 

• they follow a Poisson distribution 

The model parameters, l(b), are the metabolic properties of 
the pixels (the tissue) 

• these cause the emissions  

• they represent the expectations (means) of the resulting Poisson 
distribution causing the readings at the detectors 

 

 

Note: to conform with the literature we shall use the terms 
(object) pixels and (detector) bins here 



Relation to Functional Imaging 

Since there is a many-to-one mapping, many objects are 
probable to have produced the observed data 

• the object reconstruction (the image) having the highest such 
probability is the maximum likelihood estimate of the original object 

We shall use the following variables: 

• x[b:1…B]: the discretized image with B pixels (boxes) 

• y[d:1…D]: the data (the projections), D is the number of detector bins 
(tubes) 

The reconstruction is based on some mathematical model that 
relates parameters, observed and unobserved data 

 



Derivation 

The mathematical model is based on the assumption that the emissions 
occur according to a spatial Poisson point process in the region of interest 
(field of view) in the source. 

• for each box b there is a Poisson distributed random variable x(b), with mean 
l(b), that can be generated independently: 

 

 

 

Suppose now, that an emission in the b-th box is detected in the d-th tube 
with known probability 

             p(b,d) = P (event detected in tube d | event emitted in box b) 

 

• the probability matrix p(b,d) is assumed to be known from the detector array 
geometry and other characteristics of the system (attenuation, scatter, etc) 

• the probability of an event in box b to be detected by the scanner is given by: 

 

 

 

• thus, photons do go undetected 
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Derivation 

The variables y(d) are independent and Poisson, with 
expectation l(d) where: 

 

 

Since the x(i) are independent Poisson variables, a linear 
combination of these variables is also Poisson distributed. 

• the expectation of the observed data is therefore linked with the 
model parameters: 

 

 

l(d) then expresses the expectation (under the Poisson 
probability model for emission) to observe the given counts 
in the detector tubes if the true density is l(b).  



Derivation 

For any set of detector data y(d) there are many different 
ways the photons could have been generated.  

• thus there is a many-to-one mapping x(b,d) to y(d) 

• this mapping is Poisson distributed with mean: 

 

The likelihood function is then: 

 

 

and the log-likelihood is: 

 

 



Derivation 

For the E-step we compute: 

 

 

since  

• x(b,d) is Poisson with mean l[k](b,d)  

•                              is Poisson with mean  

• one can write, after some manipulations: 

 

 

 

 

 

 



Derivation 

In the M-step we maximize l[k](b) using x[k+1]: 

 

 

 

 

 

Combining the E and the M steps: 



Algorithm 

1. Start with an initial estimate l[0](b) satisfying x(0)(b) > 0, 
b=1,2,...,B 

2. If l[k](b) denotes the estimate of l(b) at the k-th iteration, 
define a new estimate l[k+1](b) by: 

 

 

 

3. If the required accuracy for the numerical convergence has 
been achieved, then stop 

 

 



Comments 

There are a number of properties: 

• since the correction is multiplicative, all images produced are non-
negative (compare the algebraic reconstruction methods) 

• the algorithm is also self-normalizing: the redistribution of the activity 
in the image cells which occurs after each iteration is done without 
any net increase or decrease in the total activity 

The EM algorithm for emission tomography can provide a 
physically accurate reconstruction model 

• it allows the direct incorporation of many physical factors, which, if not 
accounted for, can introduce errors in the final reconstruction.  

• these factors can be included in the transition matrix p(b,d): 

- detector response 

- attenuation correction information 

- scatter modeling 

- positron range and angulation effects 

- time-of-flight information 

- and others 



Comments 

Comparing EM to Filtered Backprojection 

• advantages: 

- less streak artifacts and noise 

- projection data can be irregularly spaced 

• disadvantages: 

- much slower due to iterative scheme 

- may produce streak artifacts at the edges 



Comments 

Stopping criterion: 

 

 

• stop when this residual goes to a small number, or grows again 

• typically, noise and the edge artifacts lead to growth in the residual 
after reaching he optimum point 

 Acceleration: 

• most popular is Ordered Subsets (OS) EM 

• here the update is done after every subset of projections 

• note: this method does not converge to a maximum likelihood 
solution, except for the case of noise-free data. 

Acceleration can provide faster convergence towards high-
likelihood estimates, however, it does not guarantee a better 
image quality  

• various modified MLE techniques exist, which incorporate a priori 
information to characterize the source distribution and the data noise. 



Bayesian Priors 

Concept: 

• Recall that EM tries to maximize the probability: 

 

    

   to observe the measured data given a current estimate of the activity 
distribution in the source.  

• according to Bayes’ theorem, one can write: 

 

 

 

 

• here we express the conditional probability that the image is true given the 
set of measured data in terms of the usually computed P(data|image), a 
normalization constant P(data) and the prior probability P(image).  

• now, the most probable image, given the set of measured data can be 
obtained by maximizing the right side of the above equation, called the         
a posteriori probability distribution of the image 

 

 

x))|P(y(or     image) | P(data



Bayesian Priors 

Makes use of some „reasonable“ a priori information in order 
to prevent the image deterioration that occurs when 
maximizing P(data|image) in unconstrained EM.  

• this a priori information is incorporated into the P(image) term 

• it represents an a priori estimate of how the resulting image is 
expected to be 

• these can be smoothness constraints or partial specified topological 
information 

• they are regularization schemes 

Examples:  

• the use of Gibbs priors penalizes large deviations between the 
estimates of the image vector for neighboring pixels, except for edges 
which divide regions 

• others: Gaussian priors, Poisson and Gamma priors, Good’s 
roughness prior:  

• all model the local continuity of images 

• another type of prior: registered anatomical MRI images   

 



Bayesian Priors 

For example: the Gibb’s Prior 

 

 

V is a potential function 

Basic idea: 

• add the log-energy function, now u(x) = log(V(x)), to the log-likelihood 
function l(x) as a penalty function 

• it expresses any prior knowledge on the smoothness or other 
property of the estimate x 

• produces a log-posterior function l(x)+ u(x) 

• the expression l(x)+ u(x) now represents the likelihood of the a 
posteriori probability distribution 

• taking the logarithms yields: 

 



Bayesian Priors 

Strategy:  

• maximize this expression by taking partials with respect to each x(i) 
and set the result to zero 

• solve with standard EM by assuming (specifying) a certain degree of 
„smoothness“ of the resulting images as an a priori information 

There are many variants of this concept, for example: 

• Maximum A Posteriori Probability EM algorithm (MAP-EM) by Levitan 
and Herman  

- assumes a multivariate Gaussian a priori probability distribution 
for the image 

• Fast Maximum A Posteriori with Entropy (FMAPE) algorithm by 
Nunez and Llacer 

- uses an entropy prior with an adjustable „contrast parameter” 

• Bayesian Image Processing (BIP) method by Liang and Hart 

• Entropy Image Processing method by Liang 

- both make use of entropy analysis on the strength correlations 
of the image pixels 



Examples 



Examples 



List Mode Acquisition 

Recall that the SPECT camera constantly rotates 

• this gives rise to a continuous acquisition 

• binning the detected events into discrete angles and detectors leads 
to discretization artifacts (blurring) 

List-mode acquisition keeps the events in a list, recording 
timestamp, acquisition location and detector angle 

• ML-EM can still be used to reconstruct, one just has to use the stored 
data parameters    

 

 

 

 

• P(ln,j) is the probability of list event In being emitted at source bin j 

• x[k]
j is the expected number of photons emitted from source bin j per 

unit of time for the k-th iteration, 

• sj is the sensitivity for that bin j 

• N is the number of list-mode events 

• J is the number of source bins. 



Gamma Camera and Energy Windows 

Collimators typically absorb well over 99.95% of all photons 
emitted from the patient 

Most gamma cameras can acquire data using multiple energy 
windows.  

• allows for simultaneous imaging of different radioisotopes, for 
example Tc-99m (140 keV) and I-131 (364 keV). 



Windowing for Scatter Correction 

Compton scatter is part of the attenuation process (up to 30%) 

• scattered photons are diverted from their original path with some loss 
in energy  

• need to reduce the number of the scattered events that are detected 

An effective technique is windowing 

• triple or dual energy windows 

• however, scatter modeling in the reconstruction can be more effective 

The triple or dual window technique 

• acquires additional images using energy windows either just below or  
on each side of the photopeak  

• it assumes that scatter recorded in these                                           
windows will be similar to the scatter in                                                         
the photopeak 

• the scatter in the photopeak can be                                                
estimated by subtraction 

• scatter=(count in narrow windows / 2 )  p/w    
p 

w w 



Windowing for Scatter Correction 

 

 

 

 

 

 

 

 

Without attenuation correction (left) the posterior wall has reduced 
counts. After attenuation correction the posterior wall is improved but 
myocardial to ventricle contrast is reduced (middle) and there is 
greater influence from abdominal activity. Scatter correction restores 
contrast (right) and reduces scatter from extra-cardiac structures  



Dynamic PET/SPECT (dSPECT) 

Conventional approaches assume constant emissions 

• but temporal changes in emissions due to wash-out from the organ 
(cardiac, brain, kidney perfusion) can provide additional information 
(for example, tumor analysis) 

• can reveal additional information about the underlying physiological 
processes and enhance the diagnostic possibilities of SPECT 

Reconstruction, using EM 

• reconstruct as separate 3D volumes 

• reconstruct as a combined 4D volume 

• reconstruct the time courses via kinetic model 

The kinetic (departmental) model: look at time-courses 

• k1 and k2:uptake/washout from blood to tissue and vice versa 

• k3 and k4: conversion from ordinary to a phosphorylated form in the 
tissue, and vice versa 

• solution via differential equations 

• may also model as B-splines 
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