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Dimensions 

1D signal f(x) 

3D signal f(x, y, z) 

4D signal f(x, y, z, t=time) 

example: 3D heart in motion 

2D signal f(x, y) 

2D signal, shown as height field 



Even / Odd Functions 

Signal is even if s(-x) = s(x) 

• denote as se 

 

 

Signal is odd if s(-x) = -s(x) 

• denote as so 

 

  

Can write any signal as a sum of 
its even and odd part: 
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Periodic Signals 

A signal is periodic if s(x+X) = s(x) 

• we call X the period of the signal 

• if there is no such X then the signal 
is aperiodic 

Sinusoids are periodic functions 

• sinosoids will play an important role 
in this course 

Write as: 

 

• where jx is the phase shift and A is 
the amplitude 

Sinusoids can combine  

• they can also occur in higher 
dimensions: 
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Complex Numbers 

A complex number c has a real and and an imaginary part: 

• c = Re{c} + i Im{c}  (cartesian representation) 

• here, i always denotes the complex part 

 We can also use a polar representation: 

 

 

 

 

 

Now think of c as a periodic signal s(x): 

• then the pointer (Ac, jc)  rotates with period X, that is, it completes 
one rotation after each integer multiple of X 

• if there is a phase shift jx then the pointer simply is already located at 
(A, jx) when x=0 

• considering c a 2D vector: Re{c} = Accos(jc) and Im{c} = Ac sin(jc)  
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Important Signals (1) 

Exponential exp 

 

• when a > 0 then exp increases 
with increasing x 

• when a < 0 then exp 
approximates 0 with increasing x   

Complex exponential / sinusoid: 

 

As before 

• the cos term is the signal’s real 
part 

• the sin term is the signal’s 
imaginary part 

• A is the amplitude, j  the phase 
shift, k determines the frequency  
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Important Signals (2) 

Rectangular function: 

 

 

 

 

 

Step function: 
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Important Signals (3) 

Triangular function:  

 

 

 

Normalized Gaussian: 

 

 

 m is the mean 

 s is the standard deviation 

 

• normalized means that the integral for 
all x is 0 
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Important Signals (4) 

Sinc function: 

 

 

• sinc(0) = 1 (L’Hopital’s rule) 

 

Dirac impulse: 

 

 

 

• an important property is its sifting property: 

 

sin( )
( )

x
sinc x

x






0 0

0

( ) 0   for 

( ) 1

x x x x

x x dx








  

 

0 0( ) ( ) ( )s x x x dx s x




 

x0 

a “needle” spike of 

 infinite height at x=x0 

x 



Linear Systems (1) 

System response L: 

 

• might be a function of time t or space x 

 

Finding the mathematical relationship between in- and output 
is called modeling 

Linear systems fulfill superposition principle: 

 

 

    where s1, s2 are arbitrary signals  

• for example, consider an amplifier with gain A: 
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Linear Systems (2) 

An example for a non-linear system: 

 

 

Time-invariance (shift-invariance = LSI): 

• properties of L do not change over time (spatial position), that is: 
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Impulse Response (1) 

A system’s response to a Dirac impulse is called impulse 
response h: 

 

 

 

 

Start with: 

 

Then write: 
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Impulse Response (2) 

In practice we use non-causal impulse responses 

• appear symmetric in their waveform  

x 0 



Convolution 

The expression 

 

      is called convolution, defined as: 

 

 

Procedure: 

    for each x do: 

   1: mirror s2 about  = 0 (change  to ) 

   2: translate mirrored s2 by  = x 

   3: multiply s1 and mirrored s2 

   4: integrate the resulting signal 

 

See next slides for an example and detailed explanation… 
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Convolution: Example 

Example x=0.7: 

1: mirror s2 about =0  

s1 

1 2 1 2( ) ( ) ( ) ( )s x s x s s x d  



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2: translate mirrored s2 by =0.7  

multiply with s1  

convolution result  

for all x 

3: integrate over all   

s2 

4: write integration result at x=0.7  



two boxes 

two gaussians 

Convolution: More Examples 

Animated gifs: 
• red, blue: convolved signals 

• green: convolution result 

 



Convolution: Detailed Explanation 

Mirroring: 

• when you take a function f(t) and mirror it about the y-axis then you get a 
new function f”(t) = f(-t)  

 

 

For convolution: 

• you have two functions: f1(t) and f2(t)  

• you would like to compute:  

 

 

• but in this form: t increases in f1 and decreases in f2, which is not convenient 

• to fix this, you mirror f2(x-t) into f2”(t-x) = f2(-(x-t)) 

• now the convolution writes:  
 

 

 

• at this point you need f2”(t) which is obtained by mirroring f2(t):  f2”(t) = f2(-t) 

• now you can do the intuitive right-sliding of f2“ for growing x   
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Convolution Properties 

Also defined for multi-dimensional signals: 

 

 

Some important properties: 

• commutativity: 

 

 

• associativity: 

 

 

• distributivity: 
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Discrete Signals 

Typically, signals are only available in discrete form 

• reconstruction into a continuous signal (for visualization, etc) occurs 
by overlapping point spread functions (see previous lecture) 

• but all computer processing (convolution and others) is done on the 
discrete representations  

1 
2 

1 1 2 -2 
0 

= 



Discrete Signals 

Typically, signals are only available in discrete form 

• reconstruction into a continuous signal (for visualization, etc) occurs 
by overlapping point spread functions (see previous lecture) 

• but all computer processing (convolution and others) is done on the 
discrete representations  
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LSI System Response (1) 

Now assume the input is a complex sinusoid with             then:  

 

 

 

 

 

H is called the Fourier Transform of h(x): 

 

 

• H is also often called the transfer function or filter 

• the Fourier transform will be discussed in detail shortly 
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LSI System Response (2) 

H scales, and maybe phase-shifts, the input sinusoid Si 

In essence, we have now two alternative representations: 

• determine the effect of L on si by convolution with h: si  h 

• determine the effect of L on si by multiplication with H: Si  H 

 

 

Since convolution is expensive for wide h, the multiplication 
may be cheaper 

• but we need to perform the Fourier transforms of si and h 

• in fact, there is a “sweetspot” 

• more later… 
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Complex Sinusoids Revisited (1) 

Recall the factor k in the complex sinusoid: 

 

 

• as k increases, so does the frequency of the oscillation 

 

 

 

 

 

 

 

 

 

 

• note: the higher k, the higher the signal resolution, that is, one can 
represent smaller signal details (signals that vary more quickly) 
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Signal Synthesis With Sinusoids 

Any periodic signal can be created by a combination of 
weighted and shifted sinusoids at different frequencies 

 

 

 

 

 

 

• Ak is the amplitude and jk is the phase shift 

Incorporating the transfer function, now one                               
for each k: 
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