Introduction to Medical Imaging

Image Operations

Klaus Mueller

Computer Science Department

Stony Brook University

Motivation

Provide the clinician with some means to:

- enhance contrast of local features
- remove noise and other artifacts
- enhance edges and boundaries
- composite multiple images for a more comprehensive view

There are two basic operations: global and local

Global operations:

- operate on the entire set of pixels at once
- examples: brightness and contrast enhancement

Local operations:

- operate only on a subset of pixels (in a pixel neighborhood)
- examples: edge detection, contouring, image sharpening, blurring

Grey Level Transformation: Basics

We only have a fixed number of grey levels that can be displayed or perceived

 need to use this 'real estate' wisely to bring out the image features that we want

Use intensity transformations T_p

 enhance (remap) certain intensity ranges at the cost of compressing others

Grey Level Transformation: Enhancements

Grey Level Transformation: Windowing

original lung CT image

Dedicate full contrast to either bone or lungs

bi-modal histogram

bone window

lung window

Multi-Image Operations: Noise Averaging

Assume a pixel value p is given by: p = signal + noise

- E(signal) = signal
- E(noise) = 0, when noise is random

Thus, averaging (adding) multiple images of a steady noisy object will eliminate, or at least reduce, the noise

original

after averaging 16 subsequently acquired images

Multi-Image Operations: Eliminating Background

In angiography, radio-opaque contrast agents (injected into the bloodstream) are used to enhance the perfused vessels

An X-ray image is taken when the radio-opaque bolus of blood is coming through

- however, the background reduces the contrast of the dye
- subtracting the (constant) background from the (dynamic) radiographic image leaves just the perfused structures (angio image)

after injection (radio-image)

background (mask image)

just the bolus (angio image)

Discrete Filters

We say *discrete filters* since they operate on a discretized signal, the image

to implement discrete filters we use discrete convolution

Procedure:

- place a weight matrix or mask at each pixel location p_{ij}
- this mask weighs the pixel's neighborhood and determines the output pixel's value
- important: do not replace the computed values into the original image, but write to an output image

Popular Discrete Filters: Lowpass

Smoothing (averaging):

- also called *low-passing:* keeps the low frequencies, but reduces the high frequencies
- removes noise and jagged edges
- but also blurs the signal

1/9 ×	1	1	1
	1	1	1
	1	1	1

Popular Discrete Filters: Median Smoothing

A non-linear filter, best used to remove speckle noise

- a regular smoothing filter would blur the speckles (and the signal)
- the median filter will elimate the speckle and leave the signal as is

Procedure:

- convolve with a mask as usual
- but this time, for each mask position, sort the values under the mask
- pick the median and write to the output image
- the speckle pixel will be an outlier and not be selected as the median

Popular Discrete Filters: Highpass

Edge detector / enhancer:

$$\nabla I = \nabla h * I$$
 first derivative (gradient)

$$abla^2 I =
abla^2 h * I$$
 second derivative (Laplacian)

- also called high-passing: keeps the high frequencies, but reduces the low frequencies
- enhances edges and contrast
- but also enhances noise and jagged edges

Gaussian Kernel

The Gaussian kernel is a popular filter function

see book for 3x3 convolution masks

Multi-Pass Filtering: High-Pass

Several useful effects can be achieved by subsequent filtering with different masks (kernels) and/or multi-image operations

Subtracting a smoothed image from the original image leaves the edges (the high frequencies):

original

1

smoothed

g * I

original - smoothed

I-g*I

Multi-Pass Filtering: Unsharp Masking

Places the enhanced edges on top of a smoothed original

Global and Local Filtering: Shortcomings (1)

Windowing enhances contrast only for a specific range of grey levels (not sensitive to edges)

strong edges with already good contrast are further enhanced

Edge enhancement (such as sharp masking) only boosts features within a certain frequency band

- this frequency band is determined by filter size -- features outside that band are not enhanced (cannot see many scales at the same time)
- all grey value variations (within that band) are enhanced, even if they already had good contrast

original

small filter: small detail

large filter: large-scale variations

Global and Local Filtering: Shortcomings (2)

One more example: digital radiograph of a foot

original

edge enhanced

window/level operation

Multi-Scale Image Enhancement: Motivation

Designed to overcome these shortcomings

- enhancements will be visible at all scales at the same time
- this requires a pyramid of detail images that are added together

Image pyramid of lowpassed images

a hierarchy of images, repeatedly lowpassed at scales of power of 2

R=reduced, E=expanded, ↑= upsample, ↓=downsample

Multi-Scale Image Enhancement: Detail Images

We have seen detail enhancement by high-pass filtering

• the result is called a detail image

We can create an image pyramid of detail images

- constructed by subtracting the smoothed image at the corresponding pyramid level from the original: $D_i = I I_i * g$
- this gives us the detail D_i at scale i

Multi-Scale Image Enhancement: Detail Pyramid

A representation of the details occurring at multiple levels of scale is called *detail pyramid*

We can reconstruct the image at level *i* by adding the expanded image at level (*i*+1) to the detail at level *i*:

Multi-Scale Image Enhancement: Non-Linear Mapping

Strategy:

- create pyramid of detail images D_i
- apply a non-linear grey-scale transformation to each of the D_i
- this emphasizes the low-contrast details (previously invisible)
- it de-emphasizes the high-contrast details (to just noticeable levels)

 finally, re-assemble the image by adding these transformed detail images recursively

Multi-Scale Image Enhancement: Results

This strategy has been employed in the MUSICA algorithm

- developed by the company Agva Gevaert
- routinely in used in digital radiography in hospitals worldwide

edge enhanced

window/level operation

MUSICA