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Introduction

Theory developed by Joseph Fourier (1768-1830)

The Fourier transform of a signal s(x) yields its

frequency spectrum S(K)
s(x)

W S(X)

5) _ DC (avérage) term

forward transform

S(k) = F{s(x)}= T s(x)e ™ dx

S(k) Inverse transform

s(x) = F4S(k)} = TS(k)ez”ikXdk




Extension to Higher Dimensions

The Fourier transform generalizes to higher dimensions

Consider the 2D case:

forward transform

S(k,)=F{s(x,y)}= J' IS(X, y)e 27 M dydy

—00 —00

s(x,y) = FYS(k,1)}= TTS(k, e Mgk I

—00 —00

Inverse transform



Calculation: Rect Function

S(k) = F{AH(—)} j AH(—)e"Z”kde =+jLAe—‘2”kde

— —i_ (e_iz’rkL — eiZ”kL) = iZSin(27sz)
277KI 277K

= 2AL sinc(27KkL)
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e) Fourier pair = ¢,

We see that a finite signal in the x-domain creates an infinite
signal in the k-domain (the frequency domain)

* the same is true vice versa



Scaling: — 1 N
* consider the rect (box): the greater L... - N

... the higher the spectrum (factor AL) S(k) = 2AL sinc(27kL)
... the narrower the spectrum (factor L)

* the scaling rule is therefore: 1 K
F{s(ax)}=—S(-) a>1 shrinks s
|a| a a<l stretches s
Symmetry: F{S(X)}=s(-k)
Linearity:  F{as,(x)+bs,(x)} = F{as,(x)}+ F{bs,(x)}
Translation: F{s(x—X,)}=S(k)e ™" —_
Convolution: F{s,(x)*s,(x)}= S, (K)-S, (k) phase shift
F{5.(X) -5, (X)}= S, (k) * S, (k)




Scaling Property

The rect function provides good insight into the relationship of
fine detail and frequency bandwidth
* a thin rect can represent/resolve fine detail (think of a signal being
represented as an array of thin rects
* athin rect gives rise to a wide frequency lobe

* this illustrates that signals with more detail will have broader
frequency spectra

* or, in turn, signals with thin frequency spectra will have low spatial

resolution
s(x)=rect(x/ L)/ L S(k) = sinc(kL)
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Influence of Transfer Function H

We know (from the last lecture) that:
s, (X) = j S, (k)e2 ™ H (k)dk

5, () =5,(%) £h(x) < 5,(k) - H(K) = S, (K)

Let’s look at a concrete example:

* His alowpass (blurring) filter: it
reduces the higher frequencies of S
more than the lower ones 2 1

Hello World

0 2 —>k4

after application of H



Calculation: Dirac Impulse

For s(X)=0(X):

S(k) = F{5(X)}= Té (x)e '™ dx =270 =1

| — —— —

O(x)

Recall that the Dirac is an extremely thin rect function
* the frequency spectrum is therefore extremely broad (1 everywhere)

This illustrates a key feature of the Fourier Transform:

* the narrower the s(x), the wider the S(k)
* sharp objects need higher frequencies to represent that sharpness



Important Fourier Pairs: Sinusoids

Sinusoids of frequency k, give rise to two spikes in the frequency
domain at £k,

cos(277k,X) <> (S(k +K,) +5(k —K,))/ 2
sin(277k, X) <> i(S(k +k,)—5(k —k,))/ 2

Recall the pointer analogon in the complex plane
for the cos(): the real signal is given by the addition of the two vectors
(divided by 2), projected onto the real axis

Alm Alm

-K, Ko ) Re >\ Re

x=0




Important Fourier Pairs: Sinusoids

Sinusoids of frequency k, give rise to two spikes in the frequency
domain at £k,

cos(277k,X) <> (S(k +K,) +5(k —K,))/ 2
sin(277k, X) <> i(S(k +k,)—5(k —k,))/ 2

Recall the pointer analogon in the complex plane
for the sin(): the real signal is given by the addition of the two vectors
(divided by 2), projected onto the imaginary axis (note the 1 in the equation)
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More Important Fourier Pairs

o(x) 1
1 0(k)
cos(27k,x) <> (o(k +k,) +o(k —k,))/2
sin(2zk,x) <> i(o(k +k,)—o(k —k,))/2

H(Z—XL) & 2Lsinc(277LK)

X .
A(— Lsinc?(rzLk
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the Gaussian width is
Inversely related
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In the 2D transform, if f(x,y) is separable, that is, f(x,y)=f(x)f(y),
one may write:

S(k,1) = FEs(x Y} = [ s(y)e 2™ ( [ s(e ™ dxjay

s(x,y) = F4{S(k,1)} = Tsa)e—zﬂ“y (Ts(k)e‘z”ikxdk)dl

* this comes in handy sometimes



Sometimes the factor 27k is used as w:
S, (X) = j S, (w)e"*H (w)dw

So far, we have only discussed the continuous space with
(potentially) infinite spectra and signals

* that is where it makes sense to use o
* but in reality we deal with finite, discrete signals (here k matters)
* we shall discuss this next



Fourier Transform of Discrete Signals

Discrete-Time Fourier Transform (DTFT)
* assumes that the signal is discrete, but infinite

+00

S(w)= ) s(hye™

N=—00
+7T _
s(n) = j S(w)e™"
* the frequency spectrum is continuous, but is periodic (has aliases)

s(n) » S(o)
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aliases centered at 21



Fourier Transform of Discrete Signals:

Discrete Fourier Transform (DFT)
* assumes that the signal is discrete and finite

1 —i127kn

S(k)=> s(n)e M

P

i
o

1277kn

s(n):%ZS(k)e N

* now we have only N samples, and we can calculate N frequencies
* The formerly continuous frequency spectrum is now discrete
* Itis periodic in N



Fourier Transform in Higher Dimensions

The 2D transform:

M -1 N-1 —127 (kn+Im)
S(k,I) = s(n,me "M
m=0 n=0
1 M -1 N-1 127 (kn+Im)
s(n,m)=—— Sk,l)e N
NM m=0 n=0
Separability:
1 M—-1 —i12zlm N —1 —i127kn
S(k,I) =NV e M P(k,m) whereP(k,m) :Zs(n,m)e N
m=0 n=0

M-1 -—i2zlm —127kn

s(n,m):ﬁZe M p(n,l) wherep(n,l):NiS(n,m)e N

* if M=N, complexity is 2-O(2N3)



Fast Fourier Transform (1)

Recursively breaks up the FT sum into odd and even terms:

N -1 —127kn N/2-1 —127k2n N/2-1 —127k(2n+1)
S(K)=>ls(me N = s@ne ¥ +> s@n+le N
n=0 n=0 n=0
N/2-1 —i127kn —127Kk N/2-1 —i27kn
= Z Seven(n)e Nz +e N Z Sodd (n)e N2
n=0 n=0

Results in an O(n-log(n)) algorithm (in 1D)
* O(n?:log(n)) for 2D (and so on)



Fast Fourier Transform (1)

Gives rise to the well-known butterfly architecture:
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