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Introduction 

Theory developed by Joseph Fourier (1768-1830)  

The Fourier transform of a signal s(x) yields its                                
frequency spectrum S(k) 
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Extension to Higher Dimensions 

The Fourier transform generalizes to higher dimensions 

Consider the 2D case: 
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We see that a finite signal in the x-domain creates an infinite 
signal in the k-domain (the frequency domain) 

• the same is true vice versa 

Calculation: Rect Function  
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Properties  

Scaling:  

• consider the rect (box): the greater L… 

… the higher the spectrum (factor AL) 

… the narrower the spectrum (factor L) 

• the scaling rule is therefore: 

 

 

Symmetry: 

Linearity: 

Translation:  

Convolution: 
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Scaling Property 

The rect function provides good insight into the relationship of 
fine detail and frequency bandwidth 

• a thin rect can represent/resolve fine detail (think of a signal being 
represented as an array of thin rects 

• a thin rect gives rise to a wide frequency lobe 

• this illustrates that signals with more detail will have broader 
frequency spectra 

• or, in turn, signals with thin frequency spectra will have low spatial 
resolution  



Influence of Transfer Function H 

We know (from the last lecture) that: 

 

 

 

Let’s look at a concrete example: 

• H is a lowpass (blurring) filter: it                                                                                 
reduces the higher frequencies of S                                                                  
more than the lower ones  
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Calculation: Dirac Impulse 

For s(x)=d(x): 

 

 

 

 

 

Recall that the Dirac is an extremely thin rect function 

• the frequency spectrum is therefore extremely broad (1 everywhere) 

This illustrates a key feature of the Fourier Transform: 

• the narrower the s(x), the wider the S(k)  

• sharp objects need higher frequencies to represent that sharpness  

2 2 0( ) { ( )} ( ) 1i kx i kS k F x x e dx e d d


 



   



Important Fourier Pairs: Sinusoids 

Sinusoids of frequency k0 give rise to two spikes in the frequency 

domain at ±k0 

 

 

 

 

 

Recall the pointer analogon in the complex plane 
• for the cos(): the real signal is given by the addition of the two vectors  

(divided by 2), projected onto the real axis  
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Important Fourier Pairs: Sinusoids 

Sinusoids of frequency k0 give rise to two spikes in the frequency 

domain at ±k0 

 

 

 

 

 

Recall the pointer analogon in the complex plane 
• for the sin(): the real signal is given by the addition of the two vectors  

(divided by 2), projected onto the imaginary axis (note the i in the equation) 
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More Important Fourier Pairs 
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Some Notes 

In the 2D transform, if f(x,y) is separable, that is, f(x,y)=f(x)f(y), 
one may write: 

 

 

 

 

• this comes in handy sometimes 

2 2( , ) { ( , )} ( ) ( ( ) )ily ikxS k l F s x y s y e s x e dx dy 
 

 

 

   

1 2 2( , ) { ( , )} ( ) ( ( ) )ily ikxs x y F S k l S l e s k e dk dl 
 

  

 

   



Some Notes  

Sometimes the factor 2k is used as w: 

 

 

 

So far, we have only discussed the continuous space with 
(potentially) infinite spectra and signals 

• that is where it makes sense to use w 

• but in reality we deal with finite, discrete signals (here k matters) 

• we shall discuss this next 
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Fourier Transform of Discrete Signals: DTFT 

Discrete-Time Fourier Transform (DTFT) 

• assumes that the signal is discrete, but infinite 

 

 

 

 

 

 

 

• the frequency spectrum is continuous, but is periodic (has aliases) 
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Fourier Transform of Discrete Signals: DFT 

Discrete Fourier Transform (DFT) 

• assumes that the signal is discrete and finite 

 

 

 

 

 

 

 

• now we have only N samples, and we can calculate N frequencies 

• The formerly continuous frequency spectrum is now discrete 

• It is periodic in N 
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Fourier Transform in Higher Dimensions 

The 2D transform: 

 

 

 

 

Separability: 

 

 

 

 

 

• if M=N, complexity is 2·O(2N3) 
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Fast Fourier Transform (1) 

Recursively breaks up the FT sum into odd and even terms: 

 

 

 

 

 

 

Results in an O(n·log(n)) algorithm (in 1D) 

• O(n2·log(n)) for 2D (and so on) 
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Fast Fourier Transform (1) 

Gives rise to the well-known butterfly architecture:  


