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Overview

Scanning:
rotate source-detector
pair around the patient
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reconstructed cross- sinogram: a line for
sectional slice every angle




Early Beginnings

filrn

Linear tomography Axial tomography
only line P1-P2 stays in focus in principle, simulates the
all others appear blurred backprojection procedure used in

current times



Current Technology

Principles derived by Godfrey Hounsfield for EMI

* based on mathematics by A. Cormack

* both received the Nobel Price in
medizine/physiology in 1979

* technology is advanced to this day

Images:
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* due to large dynamic range, windowing must be used to view an image



CT Detectors

Scintillation crystal with photomultiplier tube (PMT)

(scintillator: material that converts ionizing radiation into pulses of light)
* high QE and response time

* low packing density

* PMT used only in the early CT scanners

Gas ionization chambers

* replace PMT

e X-rays cause ionization of gas molecules in chamber

* jonization results in free electrons/ions

these drift to anode/cathode and yield a measurable electric signal

lower QE and response time than PMT systems, but higher packing
density

Scintillation crystals with photodiode

* current technology (based on solid state or semiconductors)
* photodiodes convert scintillations into measurable electric current
* QE > 98% and very fast response time



Projection Coordinate System

The parallel-beam geometry at angle 6 represents a new
coordinate system (r,s) in which projection | (r) is acquired

* rotation matrix R transforms coordinate system (X, y) to (r, S):

r _R X) (cos@d sing ) x
s/ \y) (=sin@ cos@)\y
that is, all (x,y) points that fulfill u(xy)

r=xcos(@)+ysin(o

are on the (ray) line L , _ ]
* RTis the inverse, mapping

(r,s)to (x, )

X)_ gt ry (cosd -—sin@)(r

y) |s) \sin@ cos@ s

s is the parametric variable
along the (ray) line L ,

L

lalr)




Assuming a fixed angle ¢, the measured intensity at detector
position r is the integrated density along L 4

- | ulxy)as
l,(r)=1,-e "
j 1(r-cOsO—s-sin &, r-sin O+s-cos§) ds
=1,-e"
For a continuous energy spectrum:

j u(r-cos@—s-sin@,r-sinf+s-cosd)ds

,(r) = j ,(E)-e" Y
0

But in practice, Is is assumed that the
X-rays are monochromatic

FOV




Projection Profile

Each intensity profile 1 (r) is transformed to into an attenuation
profile pr):

p,(r)=—In Ie(r):jy(r-cosé’—s-sine,r-sin9+s-cose)ds

0 Lr,0 Ay

HixY)

:
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* pAr)is zero for [r|>FOV/2 (FOV = Field of View, detector width)
* p/r) can be measured from (0O, 2x)

* however, for parallel beam views (rt, 2n) are redundant, so just need
to measure from (0, n)
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Stacking all projections (line integrals) yields
the sinogram, a 2D dataset p(r, )

To illustrate, imagine an object that is
a single point:

* it then describes a sinusoid in p(r,d):

projections point object sinogram

* note, the sinogram is very similar to the Hough transform where a
single point also gives rise to a sinusoid



Radon Transform

The transformation of any function f(x,y) into p(r,6) is called
the 2D Radon Transform

p(r,6) =R{T(x,y)}

= j f(r-cos@—s-sin@,r-sin@+s-cosd)ds

The Radon transform has the following properties:
* p(r,0) is periodic in &with period 2x
p(r,0) = p(r,0+2x)
* p(r,0) is symmetric in 8 with period &

p(r,0) = p(-r,0xx)



Sampling (1)

In practice, we only have a limited

* number of views, M
* number of detector samples, N
* for example, M=1056, N=768

This gives rise to a discrete sinogram p(n4ar,mA6)

* a matrix with M rows and N columns
Ar is the detector sampling distance
A@is the rotation interval between subsquent views

* assume also a beam of width 4s

Ar L

Sampling theory will tell us how to
choose these parameters for a
given desired object resolution
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Sampling (2)

spatial domain frequency domain

T T T + T T T
i ; b}
1 3

T * T
i

projection P (I)

sinc

beam aperture AS | function

I ™
| 1/A4s

smoothed projection | |




Sampling (3)

spatial domain frequency domain

1' i

smoothed projection

sampling at A4r
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Limiting Aliasing

Aliasing within the sinogram lines (projection aliasing):

* to limit aliasing, we must separate the aliases in the frequency
domain (at least coinciding the zero-crossings):

izi —> ArgE

Ar As 2
* thus, at least 2 samples per beam are required 4 e
e ]
Aliasing across the sinogram lines ﬂ

(angular aliasing):
ﬂkmax M: number of views, evenly . i the f
A = Mistributed around the semi-circle sinogram In the frequency

k . =1/Ar

max

M domain
K N: number of detector samples, (2 projections with N=12
Ak = —max give rise to N frequency domain samples each are shown)
N/2 samples for each projection

for uniform sampling: A@=Ak — ﬁk”‘ax: Ki —> szzE
M N/2 2




Reconstruction: Concept

Given the sinogram p(r,d) we want to recover the object
described in (x,y) coordinates

-

Recall the early axial tomography method

* basically it worked by subsequently “smearing”
the acquired p(r,d) across a film plate

* for a simple point we would get:

This is called backprojection:

b(x,y)=B{p(r,0)}= ]ﬁ p(x-cos@+y-sing,H)do



Backprojection: lllustration

morc:




Backprojection: Practical Considerations

A few issues remain for practical use of this theory:
* we only have a finite set of M projections and a discrete array of N

pixels (x;, ;)
M
b(Xi , yj) — B{p(rn ] gm)}: Z p(xi +COS Hm + yj -SIn Hm’Hm)
m=1
Tray pixel
* to reconstruct a pixel (x;, y;) there may LR +‘
not be a ray p(r,,d,) (detector sample) in
the pl‘OjeCtion set detector
—> this requires interpolation (usually / samples

linear interpolation is used)

H—J—:H—k’:ﬁ‘_'l‘
interpolation

* the reconstructions obtained with the simple backprojection appear
blurred (see previous slides)



The Fourier Slice Theorem

To understand the blurring we need more theory - the Fourier
Slice Theorem or Central Slice Theorem
* it states that the Fourier transform P(6,k) of

a projection p(r,d) is a line across the origin of
the Fourier transform F(k,,k,) of function f(x,y)

P, k)

polar grid

A possible reconstruction procedure would then:

* calculate the 1D FT of all projections p(r,,,6,,), which gives rise to
F(k,.k,) sampled on a polar grid (see figure)

* resample the polar grid into a cartesian grid (using interpolation)

e perform inverse 2D FT to obtain the desired f(x,y) on a cartesian grid

However, there are two important observations: et

* interpolation in the frequency domain leads to artifacts -

* atthe FT periphery the spectrum is only sparsely sampled -+




Filtered Backprojection: Concept

To account for the implications of these two observations, we
modify the reconstruction procedure as follows:

* filter the projections to compensate for the blurring
* perform the interpolation in the spatial domain via backprojection
- hence the name Filtered Backprojection

Filtering — for now a more practical explanation:

* we need a way to equalize the contributions of all frequencies in the
FT's polar grid

* this can be done by multiplying each P(6,k) by
a ramp function = this way the magnitudes of ~ "@MP
the existing higher-frequency samples in each
projection are scaled up to compensate for
their lower amount

* the ramp is the appropriate scaling function
since the sample density decreases linearly
towards the FT's periphery




Filtered Backprojection: Equation and Result

1D Fourier ramp-filtering
transform of p(r, ) - /
-2 P(k,0)
ﬂ\oo\ ’/
f(X,Y) =M P(k,6)-|k|te*™"dk) d&
0 |-
. N

backprojection for all angles

Recall the previous (blurred)
backprojection illustration

* now using the filtered projections:

not filtered

filtered



Filtered Backprojection: lllustration




There are various filters:

* all filters have large spatial extent - convolution would be expensive

* therefore the filtering is usually done in the frequency domain - the
required two FT’s plus the multiplication by the filter function has
lower complexity

Popular filters:

* Ram-Lak: original ramp filter limited to interval [tk ..]

* Ram-Lak with Hanning/Hamming smoothing window: de-emphasizes
the higher spatial frequencies to reduce aliasing and noise

Hamming v\vlindow

I 1 w,
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_________ \:\45 A rz______i________?ﬁz--. by H
T i Epa o X i Kpa Fpacx
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Ram-Lak



Frequency domain:
° #1. Ram-Lak H (k) :‘k‘

spatial domain

* #2:. Shepp-Logan

H(k) |

Hiw)

frequency domain

H (k) =k -sinc(zz—k)

* #3: cosine H (k) =cos(k/k

max)

Mmax

* #4: Hamming (=0.54) and Hanning (a=0.5)

HKk)=a+(1-«a) cos(kﬂ—k)

max

max



Filtering: Detalls

The filter seems to set the DC term to zero:

* but the reconstructed image has all positive
values with a non-zero average

* how can that be explained?

Recall convolution theory

* the length of a convolved signal is the sum of the supports of the
individual functions

* since convolution in the spatial domain is equivalent to multiplication
In the frequency domain, there is a direct correspondance



Filtering: Detalls

Thus:

* the extent of the projection doubles with filtering
* and the average value of this image is indeed zero

* but we are only interested in the inner part
* so it all works out!

N

« ¥

Extent of original projection

. L

Extent of projection after filtering
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cone-beam in 3D

beam configuration is not practical
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Fan Beam Acquisition

collimated
X-ray source

oﬂ

o

from: Dr. Glnter Lauritsch, Siemens



Fan-Beam Mathematics

Rewrite the parallel-beam equations into the fan-beam

geometry
P ulxy)
Recall T -
* filtering:
+FOV /2 5 .
p*(r.0)= [ p(rO)q(r—rdr’ \
_FOvV/2 e

* backprojection:
f (X, y):jp*(r,e)de with r=xcosé+ysin®
0

* and combine:

27 +FOV /2
f(x,y):j j p(r',0)g(xcos@+ysin@—r')dr'dd

0 -FOV /2



Fan-Beam Mathematics

27 +FOV /2
f(x,y):j j p(r',0)q(xcos@+ysind—r")dr'd

0 -FOV/2

0

B

* with change of variables:

I'|| R | v(x,y) = distance
O=a+p r=Rsina v from source
R |I N\
* for a voxel (x,y): v = distance, y = angle t}
N
v:\/(xcos,6’+ysin,6’)2 +(xsinB — ycosB +R)* “‘\
y=atan((xcosS+ysin) / (xsinS — ycosB + R))
the projection at 3 LT
27 1 + fan—angle/2 v —a
f(xy) = || | | Reosat pla, B)1(
0 v (X’ y) — fan—angle/2

e )a(y —a)da dp
sin(y —a)
\ N\ :

3. weighting during backprojection

1. projection pre-weighting 2 filter



Fan-Beam Mathematics

See chapter in Kak-Slaney (posted on the class website) for
equations associated with flat detectors

So, reconstruction from fan-beam data involves

* a pre-weighting of the projection data, depending on o
* a pre-weighting of the filter (here we used the spatial domain filters)
* a backprojection along the fan-beam rays (interpolation as usual)

* a weighting of the contributions at the reconstructed pixels,
depending on their distance v(X, y) from the source

There are also iterative algorithms

* these pose the reconstruction problem as a system of linear
equations

* solution via iterative solvers
* more on this to come in the nuclear medicine lectures



Fan-Beam Mathematics

Alternatively, one could also “rebin” the data into a parallel-
beam configuration

* however, this requires an additional interpolation since there is no
direct mapping into a uniform parallel-beam configuration




Fan-Beam Mathematics

Problem: fan-beam does not fill the sinogram adequately

B fan beam

parallel beam

==
\

these rays (and others) are not covered by
any fan-beam view

v

v
S 4




Fan-Beam Mathematics

Solution: extend the source-detector trajectory by the fan half-
angle on both ends

fan beam

parallel beam

(e

these rays are now covered



Fan-Beam Mathematics

More formally
* region A is covered twice, while region B is not covered at all

by AB

18047, +
)
%F,M Q

<+




Fan-Beam Mathematics

Extending the trajectory fills the space
* but some areas are filled twice, which causes problems

_—__/_130/”7,“:
T 180+ 3y

180

o =y




Fan-Beam Mathematics

Simply setting these regions to zero will result in heavy streak
artifacts

* recall the filtering step?

_ dws(y) B
Need to use a smoother window BB (i
* a smooth window is both continuous and has a
continuous derivative at the boundary of single
and double-overlap regions dws(y)
=0.
a3 [3=180° +2y
* the window weights for the same rays at opposite sides of the
sinogram must be 1. W, (y1) + Wa(y2) = |
e -
[ 45°8 _
* the Parker window sin’ w,,,_y] ’ O=pstne=%
fullfills these conditions: Wﬁm:T 1, Sy <Oy B 180° =2y
5 [ 250 18°°+27'""B] . 180° = 2y<B<180°+27,.
4 Y+ Ym




Scanner Generations

Third generation most popular since detector geometry is simplest
* collimation is feasible which eliminates scattering artifacts



Fan Beam Scanners

The 39 and 4" generation scanners:

Detector —
Fan

Third Fourth
Generation Generation

However, in the 3" generation scanner:

* the detector width (the beam aperture As) = detector spacing Ar

* recall our earlier discussion on sampling constraints where we found
> —> Ar<—
Ar As 2




Fan Beam Data Acquisition: Practice

So, we should acquire 2 samples per detector width

* a symmetrical rotation configuration violates this requirement
* the consequence is ray aliasing:




Ray Aliasing Remedies

For 3@ generation scanners:

* Y, detector shift
* dynamic focal spot
* both double the density of the sinogram with little technical overhead

180 degree rotat

- el
- o | Wy e
P : "

| /iso-ccnter
i [ i)

. |g— 1/4 detector widtl

%

detector

For 4'4 generation scanners:

* move the X-ray tube at slower speeds
* this increases the number of ray samples
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Artifacts Related to Faulty Detectors

. Faulty Detector S o o s
f:;g:\ 7
: by N T "
T~ ~g120° view \?!’ed’
Dr!:‘c’I:; \‘_’/ Zzglcc:ot:nd Culibrot:z; tpm— ri:;c =
o N gt
4 Generation

Rays Between Tube And Scanner
Bad Detector Trace A
Tangent To A Circle And Image Fog
Create A Ring On Image



Ring Artifacts

See larger ring just at the edge of the skull




A Note on Collimation

Collimation ensures that we know the ray direction at each
detector bin (perpendicular to the local tangent)

* this enables reconstruction theory

input x-ray photons

scattered photons —

e primary photons

collimator

scintillator photo-diode



Short-Scan CT

Requirement:

* an object point r can be reconstructed exactly if it sees a scan path
segment of an angular range 7t

Conseqguence:

* an smaller Region of Interest (ROI) can be reconstructed without
acquiring complete data of the object (super short-scan).

AY

object

Pl-line

scan path segment
sufficient for
reconstruction

of poiat r



Short-Scan CT

Specific algorithms are needed for reconstruction from a
super short-scan

* . Noo et al., BMP 2002
* H. Kudo et al., IEEE NSS 2002
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