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Overview 

Scanning: 

rotate source-detector 

pair around the patient 

sinogram: a line for 

every angle 

reconstruction routine 

reconstructed cross-

sectional slice 

data 



Early Beginnings 

Linear tomography 

only line P1-P2 stays in focus 

all others appear blurred 

Axial tomography 

in principle, simulates the  

backprojection procedure used in 

current times 

 

film 



Current Technology 

Principles derived by Godfrey Hounsfield for EMI 

• based on mathematics by A. Cormack 

• both received the Nobel Price in                                                
medizine/physiology in 1979 

• technology is advanced to this day 

Images: 

• size generally 512 x 512 pixels 

• values in Hounsfield units (HU)                                                                    
in the range of –1000 to 1000 

 

 

 

 

 m: linear attenuation coefficient 

 

• due to large dynamic range, windowing must be used to view an image 



CT Detectors 

Scintillation crystal with photomultiplier tube (PMT) 

(scintillator: material that converts ionizing radiation into pulses of light)  

• high QE and response time 

• low packing density 

• PMT used only in the early CT scanners 

Gas ionization chambers 

• replace PMT 

• X-rays cause ionization of gas molecules in chamber 

• ionization results in free electrons/ions  

• these drift to anode/cathode and yield a measurable electric signal 

• lower QE and response time than PMT systems, but higher packing 
density 

Scintillation crystals with photodiode 

• current technology (based on solid state or semiconductors) 

• photodiodes convert scintillations into measurable electric current 

• QE > 98% and very fast response time 



Projection Coordinate System 

The parallel-beam geometry at angle   represents a new 
coordinate system (r,s) in which projection I(r) is acquired 

• rotation matrix R transforms coordinate system (x, y) to (r, s): 

 

 

 

 

    that is, all (x,y) points that fulfill                                                                      

            r = x cos( ) + y sin()                                                                                 

   are on the (ray) line L(r,)  

• RT is the inverse, mapping                                                                    
(r, s) to (x, y) 

 

 

 

    

      s is the parametric variable                                                           

         along the (ray) line L(r,)  
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Projection 

Assuming a fixed angle , the measured intensity at detector 
position r is the integrated density along L(r,): 

 

 

 

For a continuous energy spectrum: 

 

 

But in practice, is is assumed that the                                                  
X-rays are monochromatic 

,

,

( , )

0

( cos sin , sin cos )

0

( )
Lr

Lr

x y ds

r s r s ds

I r I e

I e





m



m    



     


 


 

,

( cos sin , sin cos )

0

0

( ) ( )
Lr

r s r s ds

I r I E e 

m    



      
 



Projection Profile 

Each intensity profile I(r) is transformed to into an attenuation 
profile p(r): 

 

 

 

 

 

 

• p(r) is zero for |r|>FOV/2 (FOV = Field of View, detector width) 

• p(r) can be measured from (0, 2) 

• however, for parallel beam views (, 2) are redundant, so just need 
to measure from (0, ) 
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Sinogram 

Stacking all projections (line integrals) yields                                  
the sinogram, a 2D dataset p(r,) 

To illustrate, imagine an object that is                                       
a single point: 

• it then describes a sinusoid in p(r,): 

 

 

 

 

 

 

 

 

 

• note, the sinogram is very similar to the Hough transform where a 
single point also gives rise to a sinusoid 

projections point object sinogram 



Radon Transform 

The transformation of any function f(x,y) into p(r,) is called 
the 2D Radon Transform  

 

 

 

The Radon transform has the following properties: 

• p(r,) is periodic in  with period 2 

 

 

 

• p(r,) is symmetric in  with period  
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Sampling (1) 

In practice, we only have a limited 

• number of views, M 

• number of detector samples, N 

• for example, M=1056, N=768 

This gives rise to a discrete sinogram p(nDr,mD) 

• a matrix with M rows and N columns 

 Dr is the detector sampling distance 

 D is the rotation interval between subsquent views 

• assume also a beam of width Ds 

Sampling theory will tell us how to                                              
choose these parameters for a                                               
given desired object resolution  

Dr 

Ds 

D  



Sampling (2) 

projection p(r) 

spatial domain frequency domain 

beam aperture Ds  

smoothed projection  

* 

1 / Ds  

sinc 

function 



Sampling (3) 

sampling at Dr 

spatial domain frequency domain 

sampled projection  

smoothed projection  

1 / Dr  

. 

1 / Ds  



Limiting Aliasing 

Aliasing within the sinogram lines (projection aliasing): 

• to limit aliasing, we must separate the aliases in the frequency 
domain (at least coinciding the zero-crossings): 

 

 

• thus, at least 2 samples per beam are required 

Aliasing across the sinogram lines                                         
(angular aliasing): 
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Reconstruction: Concept 

Given the sinogram p(r,) we want to recover the object 
described in (x,y) coordinates 

Recall the early axial tomography method 

• basically it worked by subsequently “smearing”                                          
the acquired p(r,) across a film plate 

• for a simple point we would get: 

 

 

 

 

 

 

This is called backprojection: 
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Backprojection: Illustration 



Backprojection: Practical Considerations 

A few issues remain for practical use of this theory: 

• we only have a finite set of M projections and a discrete array of N 
pixels (xi, yj) 

 

 

 

 

• to reconstruct a pixel (xi, yj) there may                                                     
not be a ray p(rn,n) (detector sample) in                                                   
the projection set     

 this requires interpolation (usually                                                      
linear interpolation is used) 

 

 

 

• the reconstructions obtained with the simple backprojection appear 
blurred (see previous slides) 
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To understand the blurring we need more theory  the Fourier 
Slice Theorem or Central Slice Theorem 

• it states that the Fourier transform P(,k) of                                                                
a projection p(r,) is a line across the origin of                                                      
the Fourier transform F(kx,ky) of function f(x,y) 

 

 

 

A possible reconstruction procedure would then: 

• calculate the 1D FT of all projections p(rm,m), which gives rise to 
F(kx,ky) sampled on a polar grid (see figure) 

• resample the polar grid into a cartesian grid (using interpolation) 

• perform inverse 2D FT to obtain the desired f(x,y) on a cartesian grid   

However, there are two important observations: 

• interpolation in the frequency domain leads to artifacts   

• at the FT periphery the spectrum is only sparsely sampled   

The Fourier Slice Theorem 

polar grid 



Filtered Backprojection: Concept  

To account for the implications of these two observations, we 
modify the reconstruction procedure as follows: 

• filter the projections to compensate for the blurring 

• perform the interpolation in the spatial domain via backprojection 

 hence the name Filtered Backprojection 

Filtering – for now a more practical explanation: 

• we need a way to equalize the contributions of all frequencies in the 
FT’s polar grid 

• this can be done by multiplying each P(,k) by                                        
a ramp function  this way the magnitudes of                                              
the existing higher-frequency samples in each                                           
projection are scaled up to compensate for                                            
their lower amount 

• the ramp is the appropriate scaling function                                        
since the sample density decreases linearly                                          
towards the FT’s periphery   

ramp 



Filtered Backprojection: Equation and Result 

 

 

 

 

 

 

 

Recall the previous (blurred)                                                   
backprojection illustration 

• now using the filtered projections: 
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Filtered Backprojection: Illustration 



Filters 

There are various filters: 

• all filters have large spatial extent  convolution would be expensive 

• therefore the filtering is usually done in the frequency domain  the 
required two FT’s plus the multiplication by the filter function has 
lower complexity 

Popular filters: 

• Ram-Lak: original ramp filter limited to interval [±kmax] 

• Ram-Lak with Hanning/Hamming smoothing window: de-emphasizes 
the higher spatial frequencies to reduce aliasing and noise 

Ram-Lak 

Hamming window 

Windowed Ram-Lak Hanning window 



Filters 

Frequency domain: 

• #1: Ram-Lak  

 

 

 

 

 

• #2: Shepp-Logan 

 

 

 

• #3: cosine 

 

• #4: Hamming (a=0.54) and Hanning (a=0.5) 
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Filtering: Details  

The filter seems to set the DC term to zero: 

• but the reconstructed image has all positive                                           
values with a non-zero average 

• how can that be explained? 

Recall convolution theory 

 

 

 

 

• the length of a convolved signal is the sum of the supports of the 
individual functions 

• since convolution in the spatial domain is equivalent to multiplication 
in the frequency domain, there is a direct correspondance     



Filtering: Details 

Thus: 

• the extent of the projection doubles with filtering 

• and the average value of this image is indeed zero 

• but we are only interested in the inner part 

• so it all works out! 



Beam Geometry 

The parallel-beam configuration is not practical 

• it requires a new source location for each ray 

 

 

We’d rather get an image in “one shot” 

• the requires fan-beam acquisition 

 

parallel-beam fan-beam 
cone-beam in 3D 



Fan Beam Acquisition  

from: Dr. Günter Lauritsch, Siemens 



Fan-Beam Mathematics 

Rewrite the parallel-beam equations into the fan-beam 
geometry 

Recall: 

• filtering: 

 

 

 

• backprojection: 

 

 

 

• and combine: 
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Fan-Beam Mathematics 

 

 

• with change of variables: 

 

 

• for a voxel (x,y): v = distance, g = angle   
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2. filter 

the projection at  

1. projection pre-weighting 
3. weighting during backprojection 
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Fan-Beam Mathematics 

See chapter in Kak-Slaney (posted on the class website) for 
equations associated with flat detectors 

So, reconstruction from fan-beam data involves 

• a pre-weighting of the projection data, depending on a 

• a pre-weighting of the filter (here we used the spatial domain filters) 

• a backprojection along the fan-beam rays (interpolation as usual) 

• a weighting of the contributions at the reconstructed pixels, 
depending on their distance v(x, y) from the source 

There are also iterative algorithms 

• these pose the reconstruction problem as a system of linear 
equations 

• solution via iterative solvers  

• more on this to come in the nuclear medicine lectures  

 



Fan-Beam Mathematics 

Alternatively, one could also “rebin” the data into a parallel-
beam configuration 

• however, this requires an additional interpolation since there is no 
direct mapping into a uniform parallel-beam configuration 

 

 



Fan-Beam Mathematics 

Problem: fan-beam does not fill the sinogram adequately 



g

these rays (and others) are not covered by  

any fan-beam view 

parallel beam  

fan beam  

g



Fan-Beam Mathematics 

Solution: extend the source-detector trajectory by the fan half-
angle on both ends  



g

these rays are now covered 

parallel beam  

fan beam  

g



Fan-Beam Mathematics 

More formally 

• region A is covered twice, while region B is not covered at all 



Fan-Beam Mathematics 

Extending the trajectory fills the space 

• but some areas are filled twice, which causes problems 



Fan-Beam Mathematics 

Simply setting these regions to zero will result in heavy streak 
artifacts 

• recall the filtering step? 

Need to use a smoother window 

• a smooth window is both continuous and has a                                         
continuous derivative at the boundary of single                                           
and double-overlap regions 

 

 

• the window weights for the same rays at opposite sides of the 
sinogram must be 1. 

 

 

• the Parker window                                                                                       
fullfills these conditions:  



Scanner Generations 

Third generation most popular since detector geometry is simplest 

• collimation is feasible which eliminates scattering artifacts 

First 

Second 

Third 

Fourth 



Fan Beam Scanners 

 The 3rd and 4th generation scanners: 

 

 

 

 

 

 

However, in the 3rd generation scanner: 

• the detector width (the beam aperture Ds) = detector spacing Dr  

• recall our earlier discussion on sampling constraints where we found 
that: 
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Fan Beam Data Acquisition: Practice 

So, we should acquire 2 samples per detector width 

• a symmetrical rotation configuration violates this requirement 

• the consequence is ray aliasing:  



Ray Aliasing Remedies 

For 3rd generation scanners: 

• ¼  detector shift 

• dynamic focal spot 

• both double the density of the sinogram with little technical overhead 

 

 

 

 

 

 

 

 

 

 

For 4rd generation scanners: 

• move the X-ray tube at slower speeds  

• this increases the number of ray samples 



A Detector Element 



Artifacts Related to Faulty Detectors 



Ring Artifacts 

See larger ring just at the edge of the skull 



A Note on Collimation 

Collimation ensures that we know the ray direction at each 
detector bin (perpendicular to the local tangent) 

• this enables reconstruction theory  



Short-Scan CT  

Requirement: 

• an object point r can be reconstructed exactly if it sees a scan path 
segment of an angular range π 

Consequence:  

• an smaller Region of Interest (ROI) can be reconstructed without 
acquiring complete data of the object (super short-scan). 



Short-Scan CT 

Specific algorithms are needed for reconstruction from a 
super short-scan 

• F. Noo et al., BMP 2002 

• H. Kudo et al., IEEE NSS 2002 


