Introduction to Medical Imaging

X-Ray CT -- Introduction

Klaus Mueller

Computer Science Department

Stony Brook University

Overview

Scanning: rotate source-detector pair around the patient

data

reconstructed crosssectional slice

reconstruction routine

sinogram: a line for every angle

Early Beginnings

Linear tomography
only line P1-P2 stays in focus
all others appear blurred

Axial tomography
in principle, simulates the
backprojection procedure used in
current times

Current Technology

Principles derived by Godfrey Hounsfield for EMI

- based on mathematics by A. Cormack
- both received the Nobel Price in medizine/physiology in 1979
- technology is advanced to this day

Images:

- size generally 512 x 512 pixels
- values in Hounsfield units (HU) in the range of –1000 to 1000

μ: linear attenuation coefficient

due to large dynamic range, windowing must be used to view an image

CT Detectors

Scintillation crystal with photomultiplier tube (PMT)

(scintillator: material that converts ionizing radiation into pulses of light)

- high QE and response time
- low packing density
- PMT used only in the early CT scanners

Gas ionization chambers

- replace PMT
- X-rays cause ionization of gas molecules in chamber
- ionization results in free electrons/ions
- these drift to anode/cathode and yield a measurable electric signal
- lower QE and response time than PMT systems, but higher packing density

Scintillation crystals with photodiode

- current technology (based on solid state or semiconductors)
- photodiodes convert scintillations into measurable electric current
- QE > 98% and very fast response time

Projection Coordinate System

The parallel-beam geometry at angle θ represents a new coordinate system (r,s) in which projection $I_{\theta}(r)$ is acquired

• rotation matrix *R* transforms coordinate system (*x*, *y*) to (*r*, *s*):

that is, all (x,y) points that fulfill $r = x \cos(\theta) + y \sin(\theta)$ are on the (ray) line $L_{(r,\theta)}$

R^T is the inverse, mapping (r, s) to (x, y)

$$\begin{pmatrix} x \\ y \end{pmatrix} = R^T \begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix}$$

s is the parametric variable along the (ray) line $L_{(r,\theta)}$

Projection

Assuming a fixed angle θ , the measured intensity at detector position r is the integrated density along $L_{(r,\theta)}$:

$$I_{\theta}(r) = I_{0} \cdot e^{-\int_{L_{r,\theta}} \mu(x,y)ds}$$

$$= I_{0} \cdot e^{\int_{L_{r,\theta}} \mu(r \cdot \cos \theta - s \cdot \sin \theta, r \cdot \sin \theta + s \cdot \cos \theta)ds}$$

$$= I_{0} \cdot e^{\int_{L_{r,\theta}} \mu(r \cdot \cos \theta - s \cdot \sin \theta, r \cdot \sin \theta + s \cdot \cos \theta)ds}$$

For a continuous energy spectrum:

$$I_{\theta}(r) = \int_{0}^{\infty} I_{0}(E) \cdot e^{L_{r,\theta}} e^{L_{r,\theta}}$$

But in practice, is is assumed that the X-rays are monochromatic

Projection Profile

Each intensity profile $I_{\theta}(r)$ is transformed to into an attenuation profile $p_{\theta}(r)$:

$$p_{\theta}(r) = -\ln \frac{I_{\theta}(r)}{I_{0}} = \int_{L_{r,\theta}} \mu(r \cdot \cos \theta - s \cdot \sin \theta, r \cdot \sin \theta + s \cdot \cos \theta) ds$$

- $p_{\theta}(r)$ is zero for |r| > FOV/2 (FOV = Field of View, detector width)
- $p_{\theta}(r)$ can be measured from $(0, 2\pi)$
- however, for parallel beam views $(\pi, 2\pi)$ are redundant, so just need to measure from $(0, \pi)$

Sinogram

Stacking all projections (line integrals) yields the *sinogram*, a 2D dataset $p(r, \theta)$

To illustrate, imagine an object that is a single point:

• it then describes a sinusoid in $p(r, \theta)$:

 note, the sinogram is very similar to the Hough transform where a single point also gives rise to a sinusoid

Radon Transform

The transformation of any function f(x,y) into $p(r,\theta)$ is called the 2D Radon Transform

$$p(r,\theta) = R\{f(x,y)\}\$$

$$= \int_{-\infty}^{\infty} f(r \cdot \cos \theta - s \cdot \sin \theta, r \cdot \sin \theta + s \cdot \cos \theta) ds$$

The Radon transform has the following properties:

• $p(r,\theta)$ is periodic in θ with period 2π

$$p(r,\theta) = p(r,\theta + 2\pi)$$

• $p(r,\theta)$ is symmetric in θ with period π

$$p(r,\theta) = p(-r,\theta \pm \pi)$$

Sampling (1)

In practice, we only have a limited

- number of views, M
- number of detector samples, N
- for example, *M*=1056, *N*=768

This gives rise to a discrete sinogram $p(n\Delta r, m\Delta\theta)$

- a matrix with M rows and N columns
 Δr is the detector sampling distance
 Δθ is the rotation interval between subsquent views
- assume also a beam of width ⊿s

Sampling theory will tell us how to choose these parameters for a given desired object resolution

Sampling (2)

Sampling (3)

Limiting Aliasing

Aliasing within the sinogram lines (projection aliasing):

• to limit aliasing, we must separate the aliases in the frequency domain (at least coinciding the zero-crossings):

$$\frac{1}{\Delta r} \ge \frac{2}{\Delta s} \quad \to \quad \Delta r \le \frac{\Delta s}{2}$$

• thus, at least 2 samples per beam are required

Aliasing across the sinogram lines (angular aliasing):

$$\Delta\theta = \frac{\pi k_{\rm max}}{M}$$
 distributed around the semi-circle

$$\Delta k = \frac{k_{\text{max}}}{N/2}$$
 N: number of detector samples, give rise to N frequency domain samples for each projection

sinogram in the frequency domain
(2 projections with *N*=12 samples each are shown)

for uniform sampling:
$$\Delta \theta = \Delta k \rightarrow \frac{\pi k_{\text{max}}}{M} = \frac{k_{\text{max}}}{N/2} \rightarrow M = \pi \frac{N}{2}$$

Reconstruction: Concept

Given the sinogram $p(r,\theta)$ we want to recover the object described in (x,y) coordinates

Recall the early axial tomography method

- basically it worked by subsequently "smearing" the acquired $p(r, \theta)$ across a film plate
- for a simple point we would get:

This is called *backprojection*:

$$b(x, y) = B\{p(r, \theta)\} = \int_{0}^{\pi} p(x \cdot \cos \theta + y \cdot \sin \theta, \theta) d\theta$$

Backprojection: Illustration

Backprojection: Practical Considerations

A few issues remain for practical use of this theory:

we only have a finite set of M projections and a discrete array of N pixels (x_i, y_j)

$$b(x_i, y_j) = B\{p(r_n, \theta_m)\} = \sum_{m=1}^{M} p(x_i \cdot \cos \theta_m + y_j \cdot \sin \theta_m, \theta_m)$$

- to reconstruct a pixel (x_i, y_j) there may not be a ray $p(r_n, \theta_n)$ (detector sample) in the projection set
 - → this requires interpolation (usually linear interpolation is used)

 the reconstructions obtained with the simple backprojection appear blurred (see previous slides)

The Fourier Slice Theorem

To understand the blurring we need more theory → the Fourier

Slice Theorem or Central Slice Theorem

• it states that the Fourier transform $P(\theta, k)$ of a projection $p(r, \theta)$ is a line across the origin of the Fourier transform $F(k_x, k_y)$ of function f(x, y)

polar grid

 $P(\theta,k)$

- calculate the 1D FT of all projections $p(r_m, \theta_m)$, which gives rise to $F(k_x, k_v)$ sampled on a polar grid (see figure)
- resample the polar grid into a cartesian grid (using interpolation)
- perform inverse 2D FT to obtain the desired f(x,y) on a cartesian grid

However, there are two important observations:

- interpolation in the frequency domain leads to artifacts
- at the FT periphery the spectrum is only sparsely sampled

Filtered Backprojection: Concept

To account for the implications of these two observations, we modify the reconstruction procedure as follows:

- filter the projections to compensate for the blurring
- perform the interpolation in the spatial domain via backprojection
 - → hence the name Filtered Backprojection

Filtering – for now a more practical explanation:

- we need a way to equalize the contributions of all frequencies in the FT's polar grid
- this can be done by multiplying each P(θ,k) by a ramp function → this way the magnitudes of the existing higher-frequency samples in each projection are scaled up to compensate for their lower amount
- the ramp is the appropriate scaling function since the sample density decreases linearly towards the FT's periphery

Filtered Backprojection: Equation and Result

Recall the previous (blurred) backprojection illustration

• now using the filtered projections:

Filtered Backprojection: Illustration

Filters

There are various filters:

- all filters have large spatial extent → convolution would be expensive
- therefore the filtering is usually done in the frequency domain → the required two FT's plus the multiplication by the filter function has lower complexity

Popular filters:

- Ram-Lak: original ramp filter limited to interval $[\pm k_{max}]$
- Ram-Lak with Hanning/Hamming smoothing window: de-emphasizes the higher spatial frequencies to reduce aliasing and noise

Filters

Frequency domain:

• #1: Ram-Lak

$$H(k) = |k|$$

spatial domain

#2: Shepp-Logan

$$H(k) = |k| \cdot \operatorname{sinc}(\frac{\pi k}{2k_{\max}})$$

- #3: cosine $H(k) = \cos(k/k_{\text{max}})$
- #4: Hamming (α =0.54) and Hanning (α =0.5)

$$H(k) = \alpha + (1 - \alpha)\cos(\frac{\pi k}{k_{\text{max}}})$$

Filtering: Details

The filter seems to set the DC term to zero:

- but the reconstructed image has all positive values with a non-zero average
- how can that be explained?

Recall convolution theory

- the length of a convolved signal is the sum of the supports of the individual functions
- since convolution in the spatial domain is equivalent to multiplication in the frequency domain, there is a direct correspondance

Filtering: Details

Thus:

- the extent of the projection doubles with filtering
- and the average value of this image is indeed zero
- but we are only interested in the inner part
- so it all works out!

Beam Geometry

The parallel-beam configuration is not practical

it requires a new source location for each ray

We'd rather get an image in "one shot"

• the requires fan-beam acquisition

cone-beam in 3D

Fan Beam Acquisition

from: Dr. Günter Lauritsch, Siemens

μ(**x**,**y**)

Rewrite the parallel-beam equations into the fan-beam geometry

Recall:

• filtering:

$$p*(r,\theta) = \int_{-FOV/2}^{+FOV/2} p(r',\theta)q(r-r')dr'$$

• backprojection:

$$f(x, y) = \int_{0}^{\pi} p^{*}(r, \theta)d\theta$$
 with $r = x\cos\theta + y\sin\theta$

and combine:

$$f(x,y) = \int_{0}^{2\pi} \int_{-FOV/2}^{+FOV/2} p(r',\theta)q(x\cos\theta + y\sin\theta - r')dr'd\theta$$

v(x,y) = distance

from source

$$f(x,y) = \int_{0}^{2\pi + FOV/2} \int_{-FOV/2}^{2\pi + FOV/2} p(r',\theta)q(x\cos\theta + y\sin\theta - r')dr'd\theta$$

with change of variables:

$$\theta = \alpha + \beta$$
 $r = R \sin \alpha$

• for a voxel (x,y): v = distance, $\gamma = \text{angle}$

$$v = \sqrt{(x\cos\beta + y\sin\beta)^2 + (x\sin\beta - y\cos\beta + R)^2}$$

$$\gamma = \operatorname{atan}((x\cos\beta + y\sin\beta) / (x\sin\beta - y\cos\beta + R))$$

the projection at $\boldsymbol{\beta}$

$$f(x,y) = \int_{0}^{2\pi} \frac{1}{v^{2}(x,y)} \int_{fan-angle/2}^{fan-angle/2} \frac{R\cos\alpha}{R\cos\alpha} \cdot p(\alpha,\beta) \cdot (\frac{\gamma-\alpha}{2\sin(\gamma-\alpha)}) q(\gamma-\alpha) d\alpha \ d\beta$$
3. weighting during backprojection 1. projection pre-weighting 2. filter

See chapter in Kak-Slaney (posted on the class website) for equations associated with flat detectors

So, reconstruction from fan-beam data involves

- a pre-weighting of the projection data, depending on α
- a pre-weighting of the filter (here we used the spatial domain filters)
- a backprojection along the fan-beam rays (interpolation as usual)
- a weighting of the contributions at the reconstructed pixels, depending on their distance v(x, y) from the source

There are also iterative algorithms

- these pose the reconstruction problem as a system of linear equations
- solution via iterative solvers
- more on this to come in the nuclear medicine lectures

Alternatively, one could also "rebin" the data into a parallelbeam configuration

 however, this requires an additional interpolation since there is no direct mapping into a uniform parallel-beam configuration

Problem: fan-beam does not fill the sinogram adequately

these rays (and others) are not covered by any fan-beam view

Solution: extend the source-detector trajectory by the fan halfangle on both ends

More formally

• region A is covered twice, while region B is not covered at all

Extending the trajectory fills the space

• but some areas are filled twice, which causes problems

Simply setting these regions to zero will result in heavy streak artifacts

recall the filtering step?

Need to use a smoother window

 a smooth window is both continuous and has a continuous derivative at the boundary of single and double-overlap regions

$$\left. \frac{\partial w_{\beta}(\gamma)}{\partial \beta} \right|_{\beta = 2\gamma_m + 2\gamma} = 0$$

$$\frac{\partial w_{\beta}(\gamma)}{\partial \beta}\bigg|_{\beta=180^{\circ}+2\gamma}=0$$

• the window weights for the same rays at opposite sides of the sinogram must be 1. $w_{\beta_1}(\gamma_1) + w_{\beta_2}(\gamma_2) = 1$

• the Parker window fullfills these conditions:
$$w_{\beta}(\gamma) = \begin{cases} \sin^2\left[\frac{45^{\circ}\beta}{\gamma_m - \gamma}\right], & 0 \leq \beta \leq 2\gamma_m - 2\gamma \\ 1, & 2\gamma_m - 2\gamma \leq \beta \leq 180^{\circ} - 2\gamma \end{cases}$$
$$\sin^2\left[45^{\circ}\frac{180^{\circ} + 2\gamma_m - \beta}{\gamma + \gamma_m}\right], \quad 180^{\circ} - 2\gamma \leq \beta \leq 180^{\circ} + 2\gamma_m.$$

Scanner Generations

Third generation most popular since detector geometry is simplest

collimation is feasible which eliminates scattering artifacts

Fan Beam Scanners

The 3rd and 4th generation scanners:

However, in the 3rd generation scanner:

• the detector width (the beam aperture Δs) = detector spacing Δr

• recall our earlier discussion on sampling constraints where we found that: $1 \quad 2 \quad \Delta s$

 $\frac{1}{\Delta r} \ge \frac{2}{\Delta s} \quad \to \quad \Delta r \le \frac{\Delta s}{2}$

Fan Beam Data Acquisition: Practice

So, we should acquire 2 samples per detector width

- a symmetrical rotation configuration violates this requirement
- the consequence is ray aliasing:

Ray Aliasing Remedies

For 3rd generation scanners:

- ¼ detector shift
- dynamic focal spot
- both double the density of the sinogram with little technical overhead

For 4rd generation scanners:

- move the X-ray tube at slower speeds
- this increases the number of ray samples

A Detector Element

Artifacts Related to Faulty Detectors

Ring Artifacts

See larger ring just at the edge of the skull

A Note on Collimation

Collimation ensures that we know the ray direction at each detector bin (perpendicular to the local tangent)

this enables reconstruction theory

Short-Scan CT

Requirement:

• an object point r can be reconstructed exactly if it sees a scan path segment of an angular range π

Consequence:

• an smaller Region of Interest (ROI) can be reconstructed without acquiring complete data of the object (super short-scan).

Short-Scan CT

Specific algorithms are needed for reconstruction from a super short-scan

- F. Noo et al., BMP 2002
- H. Kudo et al., IEEE NSS 2002

