The Marching Cubes Polygonization Algorithm

- The *Marching Cubes (MC)* algorithm converts a volume into a polygonal model
 - this model *approximates* a chosen iso-surface by a mesh of polygons
 - the polygonal model can then be rendered, for example, using a fast z-buffer algorithm
 - if another iso-surface is desired, then MC has to be run again

- Steps:
 - imagine all voxels above the iso-value are set to 1, all others are set to 0
 - the goal is to find a polygonal surface that includes all 1-voxels and excludes all 0-voxels
 - look at one volume cell (a cube) at a time → hence the term *Marching Cubes*
 - here are 2 of 256 possible configurations:

 - only 1 voxel > iso-value
 - the polygon that separates inside from outside
 - the reverse case:
 - 7 voxels > iso-value
 - the same polygon results
Marching Cubes (2)

- One can identify 15 base cases
 - Use symmetry and reverses to get the other 241 cases

- The exact position of the polygon vertex on a cube edge is found by linear interpolation:
 \[iso = v_1 \cdot (1-u) + v_2 \cdot u \]
 \[u = \frac{v_1 - iso}{v_1 - v_2} \]

- Now interpolate the vertex color by:
 \[c_1 = uc_2 + (1-u)c_1 \]

- Interpolate the vertex normal by:
 \[n_1 = ug_2 + (1-u)g_1 \]

(\(g_1\) and \(g_2\) are the gradient vectors at \(v_1\) and \(v_2\) obtained by central differencing)
Ambiguous Cases

2D: ambiguous case

3D: what happens when cases are arbitrarily chosen

case 3

Remedy: add 6 alternative cases for 3, 6, 7, 10, 12, 13 to prevent holes

Example: case 3c
Remove Ambiguities Using the \textit{Asymptotic Decider} Method

- Explain in 2D:
 - surface created by bilinear interpolation
 - function \((1 - s, s) \begin{bmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{bmatrix} (1 - t, t)\)
 - gives rise to two hyperbolas \(B(s, t) = \alpha\) (isovalue)
 - ambiguity: both hyperbolas intersect domain \((0,0), (1,1)\)
 - resolve ambiguity by comparing \(B(S_\alpha, T_\alpha)\) with \(\alpha\)

\[
\begin{aligned}
\text{exterior} & : \alpha > B(S_\alpha, T_\alpha) \\
(0, T_0) & \text{ and } (S_0, 0) \\
\alpha > B(S_\alpha, T_\alpha) & \\
(0, T_0) & \text{ and } (S_0, 0) \\
\alpha > B(S_\alpha, T_\alpha) & \text{ and } \alpha > B(S_\alpha, T_\alpha)
\end{aligned}
\]

\[
\begin{aligned}
\text{interior} & : \alpha \leq B(S_\alpha, T_\alpha) \\
(0, T_0) & \text{ and } (S_0, 0) \\
\alpha \leq B(S_\alpha, T_\alpha) & \text{ and } \alpha \leq B(S_\alpha, T_\alpha)
\end{aligned}
\]

- similar cases in 3D

\[
S_\alpha = \frac{B_{00} - B_{01}}{B_{00} + B_{11} - B_{01} - B_{10}} \]

\[
T_\alpha = \frac{B_{00} - B_{10}}{B_{00} + B_{11} - B_{01} - B_{10}}
\]