Surface Graphics

- Objects are explicitly defined by a surface or boundary representation (explicit inside vs outside)
- This boundary representation can be given by:
 - a mesh of polygons:
 - 200 polys
 - 1,000 polys
 - 15,000 polys
 - a mesh of spline patches:
 - an “empty” foot
Polygon Mesh Definitions

v1, v2, v3: vertices (3D coordinates)
e1, e2, e3: edges
f1: polygon or face
n1: face normal

\[n1 = \frac{e1 \times e2}{|e1 \times e2|} \]

n2 = \(\frac{e21 \times e22}{|e21 \times e22|} \), e21 = -e12

Rule: if all edge vectors in a face are ordered counter-clockwise, then the face normal vectors will always point towards the outside of the object.

This enables quick removal of back-faces (back-faces are the faces hidden from the viewer):

- back-face condition: \(vp \cdot n > 0 \)
Polygon Mesh Data Structure

- Vertex list \((v_1, v_2, v_3, v_4, \ldots)\):
 \[(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_4, y_4, z_4), \ldots\]

- Edge list \((e_1, e_2, e_3, e_4, e_5, \ldots)\):
 \[(v_1, v_2), (v_2, v_3), (v_3, v_1), (v_1, v_4), (v_4, v_2), \ldots\]

- Face list \((f_1, f_2, \ldots)\):
 \[(e_1, e_2, e_3), (e_4, e_5, -e_1), \ldots\] \text{ or } \[(v_1, v_2, v_3), (v_1, v_4, v_2), \ldots\]

- Normal list \((n_1, n_2, \ldots)\), one per face or per vertex
 \[(n_{1x}, n_{1y}, n_{1z}), (n_{2x}, n_{2y}, n_{2z}), \ldots\]

- Use Pointers or indices into vertex and edge list arrays, when appropriate
Basic Transformations - Translation and Scale

Translation:

translate by T_x along the x-axis
translate by T_y along the y-axis

$$x' = x + T_x$$
$$y' = y + T_y$$

Scale:

scale by S_x along the x-axis
scale by S_y along the y-axis

$$x' = S_x \cdot x$$
$$y' = S_y \cdot y$$

If $S_x = S_y$ then scaling is uniform

$S < 1$ shrinks, $S > 1$ enlarges the object

Note: we always scale about the origin
Basic Transformations - Rotation

A point is represented by polar coordinates \((r, \varphi)\):

\[
\begin{align*}
 x &= r \cos(\varphi) \\
 y &= r \sin(\varphi)
\end{align*}
\]

In this notation, a point after rotation is at:

\[
\begin{align*}
 x' &= r \cos(\varphi + \theta) \\
 y' &= r \sin(\varphi + \theta)
\end{align*}
\]

Using trigonometric identities we get:

\[
\begin{align*}
 x' &= r \cos(\varphi) \cos(\theta) - r \sin(\varphi) \sin(\theta) \\
 y' &= r \sin(\varphi) \cos(\theta) + r \cos(\varphi) \sin(\theta)
\end{align*}
\]

We know that:

\[
\begin{align*}
 x &= r \cos(\varphi) \quad \text{and} \quad y = r \sin(\varphi)
\end{align*}
\]

We can plug this expression into the previous ones:

\[
\begin{align*}
 x' &= x \cos(\theta) - y \sin(\theta) \\
 y' &= x \sin(\theta) + y \cos(\theta)
\end{align*}
\]

Note: If \(\theta > 0\) then the rotation is counter-clockwise
Matrix Notation and Extension to 3D

- Scale:
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z'
 \end{bmatrix} =
 \begin{bmatrix}
 sx & 0 & 0 \\
 0 & sy & 0 \\
 0 & 0 & sz
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 \]

- Rotation about the z-axis:
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z'
 \end{bmatrix} =
 \begin{bmatrix}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 \]

- What about translation?
 - recall, we’re adding Tx, Ty, and Tz without multiplying by a coordinate

- Solution: use homogenous coordinates
 \[
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]
Transformations in Homogenous Coordinates

- Translation (T):
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 & Tx \\
 0 & 1 & 0 & Ty \\
 0 & 0 & 1 & Tz \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]

- Scale (S):
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 sx & 0 & 0 & 0 \\
 0 & sy & 0 & 0 \\
 0 & 0 & sz & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]

- Rotation about the z-axis (R_z):
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 \cos\theta & -\sin\theta & 0 & 0 \\
 \sin\theta & \cos\theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]

- Rotation about the x-axis (R_x):
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos\theta & -\sin\theta & 0 \\
 0 & \sin\theta & \cos\theta & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]

- Rotation about the y-axis (R_y):
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 \cos\theta & 0 & \sin\theta & 0 \\
 0 & 1 & 0 & 0 \\
 -\sin\theta & 0 & \cos\theta & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]
Combining Transformations

- When an object is transformed, all its vertices v_i need to be transformed to v_i':
 \[v_i' = T \cdot R_z \cdot S \cdot v_i = [T \cdot R_z \cdot S] \cdot v_i = M_t \cdot v_i \]

Combining the transformations into composite matrix M_t minimizes the matrix-vector calculations.
Transformation About an Arbitrary Point in Space

- The standard matrices given in the past few slides only allow you to *rotate* and *scale* an object about the (world) origin (Note: *translation* is an exception)

- What if you wanted to rotate or scale an object around an arbitrary point in space, say its center?

\[
v_i' = T_2 \cdot R_z (\varphi) \cdot T_1 \cdot v_i = [T_2 \cdot R_z \cdot T_1] \cdot v_i = M_{r_arbitrary_point} \cdot v_i
\]
A view is specified by:

- eye position (Eye)
- view direction vector (n)
- screen center position (Cop)
- screen orientation (u, v)
- screen width W, height H

u, v, n are orthonormal vectors

After the viewing transform:

- the screen center is at the coordinate system origin
- the screen is aligned with the x, y-axis
- the viewing vector points down the negative z-axis
- the eye is on the positive z-axis

All objects are transformed by the viewing transform
Step 1: Viewing Transform

• The sequence of transformations is:

 - *translate* the screen Center Of Projection (COP) to the coordinate system origin (T_{view})

 - *rotate* the translated screen such that the view direction vector \(n \) points down the negative z-axis and the screen vectors \(u, v \) are aligned with the x, y-axis (R_{view})

• We get \(M_{view} = R_{view} \cdot T_{view} \)

• We transform all object (points, vertices) by \(M_{view} \):

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix}
= \begin{bmatrix}
u_x & u_y & u_z & 0 \\
v_x & v_y & v_z & 0 \\
n_x & n_y & n_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 0 & 0 & -Cop_x \\
0 & 1 & 0 & -Cop_y \\
0 & 0 & 1 & -Cop_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

• Now the objects are easy to project since the screen is in a convenient position

 - but first we have to account for perspective distortion...
Step 2: Perspective Projection

- A (view-transformed) vertex with coordinates \((x', y', z')\) projects onto the screen as follows:

\[
x_p = x' \cdot \frac{\text{eye}}{\text{eye} - z'}
\]

\[
y_p = y' \cdot \frac{\text{eye}}{\text{eye} - z'}
\]

- \(x_p\) and \(y_p\) can be used to determine the screen coordinates of the object point (i.e., where to plot the point on the screen)
Step 1 + Step 2 = World-To-Screen Transform

- Perspective projection can also be captured in a matrix M_{proj} with a subsequent *perspective divide* by the homogenous coordinate w:

\[
\begin{bmatrix}
 x_h \\
 y_h \\
 z_h \\
 w
\end{bmatrix} = \begin{bmatrix}

 eye & 0 & 0 & 0 \\
 0 & eye & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & -1 & eye
\end{bmatrix} \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
\]

\[
x_p = \frac{x_h}{w}
\]

\[
y_p = \frac{y_h}{w}
\]

- So the entire *world-to-screen* transform is:

\[
M_{trans} = M_{proj} \cdot M_{view} = M_{proj} \cdot R_{view} \cdot T_{view}
\]

with a subsequent divide by the homogenous coordinate

- M_{trans} is composed only once per view and all object points (vertices) are multiplied by it
Step 3: Window Transform (1)

- Note: our camera screen is still described in world coordinates
- However, our display monitor is described on a pixel raster of size (Nx, Ny)
- The transformation of (perspective) viewing coordinates into pixel coordinates is called *window transform*
- Assume:
 - we want to display the rendered screen image in a window of size (Nx, Ny) pixels
 - the width and height of the camera screen in world coordinates is (W, H)
 - the center of the camera is at the center of the screen coordinate system
- Then:
 - the valid range of object coordinates is (-W/2 ... +W/2, -H/2 ... +H/2)
 - these have to be mapped into (0 ... Nx-1, 0 ... Ny-1):

\[
x_s = \left(x_p + \frac{W}{2} \right) \cdot \frac{N_x - 1}{W}
\]
\[
y_s = \left(y_p + \frac{H}{2} \right) \cdot \frac{N_y - 1}{H}
\]
Step 3: Window Transform (2)

- The window transform can be written as the matrix M_{window}:

$$
\begin{bmatrix}
x_s \\
y_s \\
1
\end{bmatrix} =
\begin{bmatrix}
\frac{Nx - 1}{W} & 0 & \frac{W}{2} \\
0 & \frac{Ny - 1}{H} & \frac{H}{2} \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_p \\
y_p \\
1
\end{bmatrix}
$$

- After the perspective divide, all object points (vertices) are multiplied by M_{window}

- Note: we could figure the window transform into M_{trans}
 - in that case, there is only one matrix multiply per object point (vertex) with a subsequent perspective divide
 - the OpenGL graphics pipeline does this
Orthographic (Parallel) Projection

- Leave out the perspective mapping (step 2) in the viewing pipeline
- In orthographic projection, all object points project along parallel lines onto the screen
Rendering the Polygonal Objects - The Hidden Surface Removal Problem

- We have removed all faces that are *definitely* hidden: the back-faces
- But even the surviving faces are only *potentially* visible
 - they may be obscured by faces closer to the viewer

face A of object 1 is partially obscured by face B of object 2

- Problem of identifying those face portions that are visible is called the *hidden surface problem*
- Solutions:
 - pre-ordering of the faces and subdivision into their visible parts before display (expensive)
 - the z-buffer algorithm (cheap, fast, implementable in hardware)
The Z-Buffer (Depth-Buffer) Scan Conversion Algorithm

- Two data structures:
 - z-buffer: holds for each image pixel the z-coordinate of the closest object so far
 - color-buffer: holds for each pixel the closest object’s color

- Basic z-buffer algorithm:

```
// initialize buffers
for all (x, y)
  z-buffer(x, y) = -infinity;
  color-buffer(x, y) = color_{background}

// scan convert each front-face polygon
for each front-face poly
  for each scanline y that traverses projected poly
    for each pixel x in scanline y and projected poly
      if \( z_{\text{poly}}(x, y) > z\text{-buffer}(x, y) \)
        z-buffer(x, y) = \( z_{\text{poly}}(x, y) \)
        color-buffer(x, y) = \( \text{color}_{\text{poly}}(x, y) \)
```
Illumination

Total light decomposition

Light = reflected + transmitted + absorbed

Reflected light

Reflected light = ambient + diffuse + specular

\[I = I_a + I_d + I_s \]
Illumination - Examples

ambient

ambient + diffuse

ambient + diffuse + specular
(and a checkerboard)
Ambient Reflection

- Uniform background light
- \(I_a = k_a I_A \)
 - \(I_A \): ambient light
 - \(k_a \): material’s ambient reflection coefficient
- Models general level of brightness in the scene
- Accounts for light effects that are difficult to compute (secondary diffuse reflections, etc)
- Constant for all surfaces of a particular object and the directions it is viewed at
Diffuse Reflection

- Models dullness, roughness of a surface
- Equal light scattering in all directions
- For example, chalk is a diffuse reflector

Lambertian cosine law:

\[I_d = k_d I_L \cos \varphi = k_d I_L \cdot N \cdot L \]

I_L: intensity of light source

N: surface normal vector

L: light vector (unit length)

\varphi: angle of light incidence

k_d: diffuse reflection coefficient (material constant)

Note: \(I_d = 0 \) for \(N \cdot L < 0 \)

Dot product:

\[N \cdot L = (N_x L_x + N_y L_y + N_z L_z) \]

L: light vector

P: object

\[L = \frac{\text{Light} - P}{|\text{Light} - P|} = \frac{(\text{Light} - P)_x}{|L'|}, \frac{(\text{Light} - P)_y}{|L'|}, \frac{(\text{Light} - P)_z}{|L'|} \]

\[|L'| = \sqrt{(\text{Light}_x - P_x)^2 + (\text{Light}_y - P_y)^2 + (\text{Light}_z - P_z)^2} \]
Specular Reflection - Fundamentals

- Models reflections on shiny surfaces (polished metal, chrome, plastics, etc.)
- Ideal specular reflector (perfect mirror) reflects light only along reflection vector R
- Non-ideal reflectors reflect light in a lobe centered about R
 - $\cos(\alpha)$ models this lobe effect
 - the width of the lobe is modeled by Phong exponent n_s, it scales $\cos(\alpha)$

Phong specular reflection model:

$$I_s = k_s \ I_L \ \cos^{n_s} \ \alpha = k_s \ I_L \ (E \cdot R)^{n_s}$$

- I_L: intensity of light source
- L: light vector
- R: reflection vector $= 2 \ N (N \cdot L) - L$
- E: eye vector $= (\text{Eye-P}) / |\text{Eye-P}|$
- α: angle between E and R
- n_s: Phong exponent
- k_s: specular reflection coefficient
Specular and Diffuse Reflection - Varying the Coefficients

diffuse coefficient k_d

Phong exponent n_s
Specular Reflection - Using the Half Vector

- Sometimes the half vector H is used instead of R in specular lighting calculation
- Both alternatives have similar effects

Phong specular reflection model:

$$I_s = k_s I_L \cos^{ns} \beta = k_s I_L (H \cdot N)^{ns}$$

I_L: intensity of lightsource
L: light vector
H: half vector $= (L + E) / |L + E|$
R: reflection vector
E: eye vector
Total Reflected Light

- Total reflected light (for a white object):
 \[I = k_a I_A + k_d I_L N \cdot L + k_s I_L (H \cdot N)^{ns} \]

- Multiple lightsources:
 \[I = k_a I_A + \sum (k_d I_i N \cdot L_i + k_s I_i (H_i \cdot N)^{ns}) \]

- Usually, I is a color vector of (R=red, G=green, B=blue)
- Object has a color vector \(C_{obj} = (R_{obj}, G_{obj}, B_{obj}) \)
- Object reflects I, modulated by \(C_{obj} \)
- Color C reflected by object:
 \[C = C_{obj} (k_a I_A + \sum (k_d I_i N \cdot L_i)) + \sum (k_s I_i (H_i \cdot N)^{ns}) \]

- In many applications, the specular color is not modulated by object color
 - specular highlight has the color of the lightsource
- Note: (R, G, B) cannot be larger than 1.0 (later scaled to [0, 255] for display)
 - either set a maximum for each individual term or clamp final colors to 1.0
Polygon Shading Methods - Faceted Shading

• How are the pixel colors determined in z-buffer?

• The simplest method is *flat or faceted shading*:
 - each polygon has a constant color
 - compute color at one point on the polygon (e.g., at center) and use everywhere
 - assumption: lightsource and eye is far away, i.e., \(N \cdot L, H \cdot E = \text{const.} \)

• Problem: discontinuities are likely to appear at face boundaries
Polygon Shading Methods - Gouraud Shading

- Colors are averaged across polygons along common edges \(\rightarrow \) no more discontinuities

- Steps:
 - determine average unit normal at each poly vertex:
 \[
 N_v = \frac{n}{\sum_{k=1}^{n} N_k} / \sum_{k=1}^{n} N_k
 \]

 \(n \): number of faces that have vertex \(v \) in common
 - apply illumination model at each poly vertex \(\rightarrow C_v \)
 - linearly interpolate vertex colors across edges
 - linearly interpolate edge colors across scan lines

- Downside: may miss specular highlights at off-vertex positions or distort specular highlights
Polygon Shading Methods - Phong Shading

- Phong shading linearly interpolates normal vectors, not colors
 → more realistic specular highlights
- Steps:
 - determine average normal at each vertex
 - linearly interpolate normals across edges
 - linearly interpolate normals across scanlines
 - apply illumination model at each pixel to calculate pixel color

- Downside: need more calculations since need to do illumination model at each pixel
Rendering With OpenGL (1)

- `glMatrixMode(GL_PROJECTION)`
- Define the viewing window:
 - `glOrtho()` for parallel projection
 - `glFrustum()` for perspective projection
- `glMatrixMode(GL_MODELVIEW)`
- Specify the viewpoint
 - `gluLookat()` /* need to have GLUT */
- Model the scene
 - `glTranslate()`, `glRotate()`, `glScale()`, ...

Modelview Matrix Stack

<table>
<thead>
<tr>
<th>Order of execution</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gluLookat(...)</code></td>
</tr>
<tr>
<td><code>glTranslate(x,y,z)</code></td>
</tr>
<tr>
<td><code>glRotate(ϕ_y,0,1,0)</code></td>
</tr>
<tr>
<td><code>glRotate(ϕ_z,0,0,1)</code></td>
</tr>
<tr>
<td><code>glRotate(ϕ_x,1,0,0)</code></td>
</tr>
</tbody>
</table>

Modelview Matrix Stack

<table>
<thead>
<tr>
<th>Order of execution</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gluLookat(...)</code></td>
</tr>
<tr>
<td><code>glTranslate(x,y,z)</code></td>
</tr>
<tr>
<td><code>glRotate(ϕ_y,0,1,0)</code></td>
</tr>
<tr>
<td><code>glRotate(ϕ_z,0,0,1)</code></td>
</tr>
<tr>
<td><code>glRotate(ϕ_x,1,0,0)</code></td>
</tr>
</tbody>
</table>

Modelview Matrix Stack

<table>
<thead>
<tr>
<th>Order of execution</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gluLookat(...)</code></td>
</tr>
<tr>
<td><code>glTranslate(x,y,z)</code></td>
</tr>
<tr>
<td><code>glRotate(ϕ_y,0,1,0)</code></td>
</tr>
<tr>
<td><code>glRotate(ϕ_z,0,0,1)</code></td>
</tr>
<tr>
<td><code>glRotate(ϕ_x,1,0,0)</code></td>
</tr>
</tbody>
</table>

Vertex

<table>
<thead>
<tr>
<th>Vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>z</td>
</tr>
<tr>
<td>w</td>
</tr>
</tbody>
</table>

OpenGL rendering pipeline

<table>
<thead>
<tr>
<th>OpenGL rendering pipeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelview Matrix</td>
</tr>
<tr>
<td>Projection Matrix</td>
</tr>
<tr>
<td>Perspective Division</td>
</tr>
<tr>
<td>Viewport Transformation</td>
</tr>
</tbody>
</table>

object coordinates

<table>
<thead>
<tr>
<th>eye coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>clip coordinates</td>
</tr>
<tr>
<td>window coordinates</td>
</tr>
<tr>
<td>normalized device coordinates</td>
</tr>
</tbody>
</table>
Rendering With OpenGl (2)

Specify the light sources: glLight()
Enable the z-buffer: glEnable(GL_DEPTH_TEST)

Enable lighting: glEnable(GL_LIGHTING)

Enable light source i: glEnable(GL_LIGHTi) /* GL_LIGHTi is the symbolic name of light i */

Select shading model: glShadeModel() /* GL_FLAT or GL_SMOOTH */

For each object:

/* duplicate the matrix on the stack if want to apply some extra transformations to the object */

glPushMatrix();

glTranslate(), glRotate(), glScale() /* any specific transformation on this object */

for all polygons of the object: /* specify the polygon (assume a triangle here) */

glBegin(GL_POLYGON);

 glColor3fv(c1); glVertex3fv(v1); glNormal3fv(n1); /* vertex 1 */
 glColor3fv(c2); glVertex3fv(v2); glNormal3fv(n2); /* vertex 2 */
 glColor3fv(c3); glVertex3fv(v3); glNormal3fv(n3); /* vertex 3 */

 glEnd();

 glPopMatrix() /* get rid of the object-specific transformations, pop back the saved matrix */
Example: Scene Graph Bike

\[T_d = \text{glTranslate}(\text{dist}) \] // translate bike

\[\text{glPush()} \] // duplicate \(T_d \) on the stack
\[T_f = \text{glTranslate}(+\text{w}_1 \rightarrow \text{O}) \]
\[R = \text{glRotate}(\text{angle}) \]
\[T_b = \text{glTranslate}(-\text{w}_1 \rightarrow \text{O}) \]
\[\text{Render}(\text{w}_1) \] // \(T_d T_b R T_f w_1 \)
\[\text{glPop()} \] // expose \(T_d \)

\[\text{glPush()} \] // duplicate \(T_d \)
\[\text{glTranslate}(+\text{w}_2 \rightarrow \text{O}) \]
\[\text{glRotate}(\text{angle}) \]
\[\text{glTranslate}(-\text{w}_2 \rightarrow \text{O}) \]
\[\text{Render}(\text{w}_2) \] // \(T_d T_b R T_f w_1 \)
\[\text{glPop()} \] // expose \(T_d \)

\[\text{Render}(\text{frame}) \] // \(T_d f \)
Global Illumination

Trace rays across the scene and gather illumination
With Transparencies and Refractions
Photon Mapping

Overall idea:

• spread photons (light particles into the scene)

• store them

• gather them up with raycasting

• devised by H. Wann Jensen, Rendering Techniques 1996
Photon Mapping: Details

Challenge:

- storage is irregular
- typically use KD-tree
Ambient Occlusion

Efficient way to approximate global illumination

• instead of bouncing light around, check for percentage of local occlusion/visibility
• does not require computation of normal vectors
• related to accessibility shading
Ambient Occlusion
Ambient Occlusion: Algorithm

Cast rays in every direction of a hemisphere
• intersect with (nearby) geometry

Formally, integrate visibility over Ω

$$A_p = \frac{1}{\pi} \int_{\Omega} V_{\vec{p},\omega}(\hat{n} \cdot \hat{\omega}) \ d\omega$$