CSE 564
Visualization & Visual Analytics

Visual Design and Aesthetics

Klaus Mueller

Computer Science Department
Stony Brook University
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro, schedule, and logistics</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applications of visual analytics and basic tasks</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Introduction to D3, basic vis techniques for non-spatial data</td>
<td>Project #1 out</td>
</tr>
<tr>
<td>4</td>
<td>Visual perception and cognition</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Visual design and aesthetics</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Data types, notion of similarity and distance</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Data preparation and reduction</td>
<td>Project #1 due</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to R, statistics foundations</td>
<td>Project #2 out</td>
</tr>
<tr>
<td>9</td>
<td>Data mining techniques: clusters, text, patterns, classifiers</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Data mining techniques: clusters, text, patterns, classifiers</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Computer graphics and volume rendering</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Techniques to visualize spatial (3D) data</td>
<td>Project #2 due</td>
</tr>
<tr>
<td>13</td>
<td>Scientific and medical visualization</td>
<td>Project #3 out</td>
</tr>
<tr>
<td>14</td>
<td>Scientific and medical visualization</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Midterm #1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>High-dimensional data, dimensionality reduction</td>
<td>Project #3 due</td>
</tr>
<tr>
<td>17</td>
<td>Big data: data reduction, summarization</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Correlation and causal modeling</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Principles of interaction</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Visual analytics and the visual sense making process</td>
<td>Final project proposal due</td>
</tr>
<tr>
<td>21</td>
<td>Evaluation and user studies</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Visualization of time-varying and time-series data</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Visualization of streaming data</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Visualization of graph data</td>
<td>Final Project preliminary report due</td>
</tr>
<tr>
<td>25</td>
<td>Visualization of text data</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Midterm #2</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Data journalism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final project presentations</td>
<td>Final Project slides and final report due</td>
</tr>
</tbody>
</table>
Formal theory linking perception to visualization
Established by Jacques Bertin (1967)

- he called it ‘Image Theory’
- original book in French (*Sémiologie Graphique*)
 translated into English by W. Berg (1983)
- not formally linked to vision research
 more based on intuition
- but has been shown later by M. Green to be quite accurate
Two planar variables
- spatial dimensions
- map (arm, grip) to (x,y)

Six retinal variables
- size
- color
- shape
- orientation
- texture
- brightness

Retinal variables allow for one more variable to be encoded
- more than three variables will hamper efficient visual search
- recall low decoding speed of conjunctions
Visual variables differ in what data properties they can convey.

<table>
<thead>
<tr>
<th></th>
<th>Associative</th>
<th>Selective</th>
<th>Ordered</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Brightness</td>
<td></td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Texture</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Color</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation</td>
<td>yes</td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td>yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Both are nominal qualities

Associative
- lowest organizational level
- enables visual grouping of all elements of a variable

Selective
- next lowest level
- enables viewer to isolate encoded data and ignore others
Background with same-colored object at the same brightness

- can you see the shape?
- can you count the number of gaps?
Background with different-colored object at similar brightness

- can you see the shape?
- can you count the number of gaps?
Background with different-colored object at lower brightness

- can you see the shape?
- can you count the number of gaps?
Background with different-colored object at higher brightness

- can you see the shape?
- can you count the number of gaps?
What Did we Learn from that Experiment?

Color is for ...

Brightness (intensity, luminance) is for ...
Luminance and Hue

- Luminance mapped to height
- Just hue
- Hue and luminance encode high frequency information by L

From Bergman/Rogowitz/Treinish Vis’95
ROLE OF SATURATION

ART & MONEY
#datavisualisation

This Animated Bubble Chart shows the 270 most expensive artworks sold in auction since 2008 until end 2011.

- drawing
- silkscreen
- painting
- sculpture

SORTING
- year by year
- top 10 artworks
- men / women
- dead / alive
- **by nationality**
- best-selling artists
- auction houses
- size of artworks
- date of creation (all centuries)
Which is the most important structure in each (as intended by the author)
Which one do people like better?

- perceived importance level of red object is the same
COLOR CODING AND COLORMAPS

- Color coding
 - large areas: low saturation
 - small areas: high saturation
 - maintain luminance contrast
 - break iso-luminances with borders

- Pseudo-coloring: assign colors to grey levels by indexing the grey levels into a color map
As we saw, colors can add detail information to a visualization

- instead of 256 levels get \(256^3 = 16,777,216\)

Oftentimes you have a visualization with just one variable

- this would give you a grey level image
- how to turn this into a color image for better detail

Solution 1:

- map to hue → the rainbow colormap

- can you see all adjacent colors at the same contrast?
Avoid rainbow Colormaps
Better: Linear Hue
Nominal scales
- distinct hues, but similar emphasis

Sequential scales
- vary in lightness and saturation
- vary slightly in hue

Diverging scale
- complementary sequential scales
- neutral at “zero”
Opponent colors do not mix

- can only see one of the opponents
- there is no blueish yellow
- there is no reddish green
Most common is deficiency in distinguishing red and green
Forms of Color Blindness

- Normal
- Green missing
- Red missing
- Blue missing (rare)
Ishihara Test

normal

protanopia
LINE CHARTS
8% (0.5%) of US males (females) are color deficient
 - so be careful when designing visualizations

What to do?
 - use different intensities for red-green (e.g. light green, dark red)
 - space red and green colored colors dots far apart or make large
 - add symbols to line charts
 - avoid using gradient colors to indicate data value
Use Luminance for detail, shape, and form
Use color for coding – few colors
Use strong colors for small areas
Use subtle colors to code large areas

Visualization artistry:
- Use of luminance to indicate direction