CSE 564
Visualization & Visual Analytics

Introduction to D3

Klaus Mueller

Computer Science Department
Stony Brook University
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro, schedule, and logistics</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applications of visual analytics, basic tasks, data types</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Introduction to D3, basic vis techniques for non-spatial data</td>
<td>Project #1 out</td>
</tr>
<tr>
<td>4</td>
<td>Visual perception and cognition</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Visual design and aesthetics</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Data types, notion of similarity and distance</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Data preparation and reduction</td>
<td>Project #1 due</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to R, statistics foundations</td>
<td>Project #2 out</td>
</tr>
<tr>
<td>9</td>
<td>Data mining techniques: clusters, text, patterns, classifiers</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Data mining techniques: clusters, text, patterns, classifiers</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Computer graphics and volume rendering</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Techniques to visualize spatial (3D) data</td>
<td>Project #2 due</td>
</tr>
<tr>
<td>13</td>
<td>Scientific and medical visualization</td>
<td>Project #3 out</td>
</tr>
<tr>
<td>14</td>
<td>Scientific and medical visualization</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Midterm #1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>High-dimensional data, dimensionality reduction</td>
<td>Project #3 due</td>
</tr>
<tr>
<td>17</td>
<td>Big data: data reduction, summarization</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Correlation and causal modeling</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Principles of interaction</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Visual analytics and the visual sense making process</td>
<td>Final project proposal due</td>
</tr>
<tr>
<td>21</td>
<td>Evaluation and user studies</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Visualization of time-varying and time-series data</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Visualization of streaming data</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Visualization of graph data</td>
<td>Final Project preliminary report due</td>
</tr>
<tr>
<td>25</td>
<td>Visualization of text data</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Midterm #2</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Data journalism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final project presentations</td>
<td>Final Project slides and final report due</td>
</tr>
</tbody>
</table>

Note: Projects #1, #2, and #3做完后就需要提交完成的报告。
The material presented in these slides is derived from this book:

![Book Cover](image)

Also available online
WHAT IS D3.JS?

D3 = Data Driven Documents

JavaScript library for manipulating documents based on data
- frequent tool to support *data journalism* (New York Times)

D3 helps you bring data to life using HTML, SVG, and CSS
- great library to construct animated visualizations (D3 website)

Runs in any modern web browser (Chrome, Firefox, IE)
- no need to download any software
- independent of OS (Linux, Windows Mac)
Makes Use Of

HTML Hypertext Markup Language
CSS Cascading Style Sheets
JS JavaScript
DOM The Document Object Model
 • tree structured organization of HTML objects
SVG Scalable Vector Graphics

Raster .jpeg .gif .png
Vector .svg
What You Need

A text editor
- textMate, eclipse/aptana, sublime text 2, or your browser
- need an editor with syntax highlighting. else it’s easy to get lost

The d3 library
- from http://d3js.org

Data files for your code

A web server (recommended)
- if your visualization is reading data from files or a database (XMLHttpRequest)
- many options: EasyPHP (windows), Mac OS X Server, MAMP, Python
- else need to specify the data in the code

A browser
- to run the code
Your folder structure should look like this:

project-folder/
 d3/
 d3.v3.js // D3 library
 d3.v3.min.js (optional) // minified D3 library
 index.html
Your initial webpage (index.html) should look like this:

```html
<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <title>D3 Page Template</title>
    <script type="text/javascript" src="d3/d3.v3.js"></script>
  </head>
  <body>
    <script type="text/javascript">
      // Your beautiful D3 code will go here
    </script>
  </body>
</html>
```
MAMP = My Apache, MySQL, PHP
- really only need Apache for now
- MS Windows = WampServer and XAMPP for Windows
- Mac = MAMP or XAMPP for Mac

Procedure
- install package (Linux has it already installed)
- find webserver folder (only files residing there will be served)
- put project files there
- open browser and point to http://localhost/ or http://localhost:8888/ or http://localhost:8888/project-folder/
var dataset = [5, 10, 15, 20, 25];
Consider the following js code … all methods are chained:

d3.select("body").selectAll("p")
 .data(dataset)
 .enter()
 .append("p")
 .text("New paragraph!");

which gives this output
 ▪ how did this happen?
Consider the following js code ... all methods are chained:

d3.select("body").selectAll("p") // selects all paragraphs in the DOM (none so far ...)
 .data(dataset) // counts and parses the data values
 .enter() // creates new, data-bound elements (placeholders) for the data values
 .append("p") // takes the empty placeholder and adds a p-element
 .text("New paragraph!"); // takes the p-element and inserts a text value

which gives this output
 - how did this happen?

New paragraph!
New paragraph!
New paragraph!
New paragraph!
Change the last line to:

d3.select("body").selectAll("p")
 .data(dataset)
 .enter()
 .append("p")
 .text(function(d) { return d; });

which gives this output
 ▪ how did this happen?
Using the Data

Change the last line to:

d3.select("body").selectAll("p")
 .data(dataset)
 .enter()
 .append("p")
 .text(function(d) { return d; }); // used the data to populate the contents of each paragraph of the data-driven document

which gives this output

- how did this happen?
Change the last line to:

```javascript
d3.select("body").selectAll("p")
  .data(dataset)
  .enter()
  .append("p")
  .text(function(d) { return "I can count up to " + d; });
```

which gives this output
- how did this happen?
Change the last line to:

d3.select("body").selectAll("p")
 .data(dataset)
 .enter()
 .append("p")
 .text(function(d) { return "I can count up to " + d; })
 .style("color", "red");

which gives this output
 ▪ how did this happen?
Replace the last line with:

d3.select("body").selectAll("p")
 .data(dataset)
 .enter()
 .append("p")
 .text(function(d) { return "I can count up to " + d; })
 .style("color", function(d) { if (d > 15) {return "red"; } else { return "black"; } });

which gives this output
- how did this happen?
Let’s draw some bar charts

For this, put this embedded style in the document head

div.bar {
 display: inline-block;
 width: 20px;
 height: 75px; /* We'll override height later */
 background-color: teal;
}
Run this code:

```javascript
var dataset = [ 5, 10, 15, 20, 25 ];

d3.select("body").selectAll("div")
  .data(dataset)
  .enter()
  .append("div")
  .attr("class", "bar");
```

which gives this output

- five bars with no space between them
- how did this happen?
Run this code:

```javascript
var dataset = [5, 10, 15, 20, 25];

d3.select("body").selectAll("div")
  .data(dataset)
  .enter()
  .append("div")
  .attr("class", "bar")
  .style("height", function(d) { return d + "px"; });
```

which gives this output
- how did this happen?
Run this code:

```javascript
var dataset = [ 5, 10, 15, 20, 25 ];

d3.select("body").selectAll("div")
 .data(dataset)
 .enter()
 .append("div")
 .attr("class", "bar")
 .style("height", function(d) { return d + "px"; });  // adds text “px” to specify that the units are pixels → heights are 5px, 10px, 15px, 20px, and 25px
```

which gives this output

- how did this happen?
Run this code: (also add margin-right: 2px; to the css style)

```javascript
var dataset = [ 5, 10, 15, 20, 25 ];

d3.select("body").selectAll("div")
  .data(dataset)
  .enter()
  .append("div")
  .attr("class", "bar")
  .style("height", function(d) { var barHeight = d * 5; return barHeight + "px"; });
```

which gives this output

- how did this happen?
Optionally define some variable beforehand, e.g.:

```javascript
// width and height
var w = 500;
var h = 50;

Define the svg object:

var svg = d3.select("body")
  .append("svg")
  .attr("width", w)
  .attr("height", h);
```
Define the circles as variables for ease of reference:

```javascript
var circles = svg.selectAll("circle")
  .data(dataset)
  .enter()
  .append("circle");
```

But could so this just as well:

```javascript
svg.selectAll("circle")
  .data(dataset)
  .enter()
  .append("circle"); // now circles are appended to the end of the SVG element
```
Now Draw The Circles

Run this code (still using var dataset = [5, 10, 15, 20, 25];)

circles.attr("cx", function(d, i) {return (i * 50) + 25;})
 .attr("cy", h/2)
 .attr("r", function(d) {return d;});

or append it to the .append("circle") method

This gives this output
 - how did this happen?
Run this code (still using var dataset = [5, 10, 15, 20, 25];)

circles.attr("cx", function(d, i) {return (i * 50) + 25;}); // i increments by 1 each time, starting at 0

 .attr("cy", h/2)
 .attr("r", function(d) {return d;});

or append it to the .append("circle") method

This gives this output
 ▪ how did this happen?
Run this code (still using var dataset = [5, 10, 15, 20, 25];)

circles.attr("cx", function(d, i) {return (i * 50) + 25;})
 .attr("cy", h/2)
 .attr("r", function(d) {return d;})
 .attr("fill", "yellow")
 .attr("stroke", "orange")
 .attr("stroke-width", function(d) {return d/2;});

This gives this output
 - how did this happen?
Code
This will update the bar chart on a **mouse click**:

```javascript
var h = 200;  // height of bar chart
var w = 500;  // width of bar chart
var margin = {top: 20, right: 20, bottom: 20, left: 20};
var width = w - margin.left - margin.right;
var height = h - margin.top - margin.bottom;
var svg = d3.select("svg").attr("width", w).attr("height", h);  

var svgInner = svg.append("g").attr("transform", "translate(" + margin.left + ", " + margin.top + ")");

// Add the rects to the svg
svgInner.selectAll("rect")
  .data(dataset)
  .attr("y", function(d) { return h - yScale(d); })
  .attr("height", function(d) { return yScale(d); });
```

```javascript
d3.select("p")
  .on("click", function() {
    // New values for dataset
    dataset = [ 11, 12, 15, 20, 18, 17, 16, 18, 23, 25, 5, 10, 13, 19, 21, 25, 22, 18, 15, 13 ];

    // Update all rects
    svg.selectAll("rect")
      .data(dataset)
      .attr("y", function(d) { return h - yScale(d); })
      .attr("height", function(d) { return yScale(d); });
  });
```
Smooth animations are desirable:

```javascript
svg.selectAll("rect")
  .data(dataset)
  .transition()
  .attr("y", function(d) {
    return h - yScale(d);
  })
  .attr("height", function(d) {
    return yScale(d);
  })
  .attr("fill", function(d) {
    return "rgb(0, 0, " + (d * 10) + ")";
  });
```
Now run **this code:**

```javascript
svg.selectAll("rect")
  .data(dataset)
  .transition()
  .duration(1000)  // <--- Now this is new!
  .attr("y", function(d) {
    return h - yScale(d);
  })
  .attr("height", function(d) {
    return yScale(d);
  })
  .attr("fill", function(d) {
    return "rgb(0, 0, " + (d * 10) + ")";
  });
```
Facilitated by event handlers (listeners), e.g.:

d3.select("p")
 .on("click", function() {
 //Do something on click
 });

others react on
 - mouse hovering
 - mouse over
 - mouse out
 - and others

Example
Assume you selected a certain item by mouseover

```
.on("mouseover", function() {
    //Do something on mouseover of any bar
});
```

Keyword “this” maps the action to the selected item

```
.on("mouseover", function() {
    d3.select(this)
        .attr("fill", "orange");
});
```
D3 layouts take data that you provide
- remap or otherwise transform it
- and so generating new data that is more convenient for a specific visual task

The supported layouts are:
- Bundle and Chord
- Cluster
- Force
- Histogram
- Pack, Partition, and Pie
- Stack
- Tree and Treemap
```javascript
var dataset = {
  nodes: [
    { name: "Adam" },
    { name: "Bob" },
    { name: "Carrie" },
    { name: "Donovan" },
    { name: "Edward" },
    { name: "Felicity" },
    { name: "George" },
    { name: "Hannah" },
    { name: "Iris" },
    { name: "Jerry" }
  ],
  edges: [
    { source: 0, target: 1 },
    { source: 0, target: 2 },
    { source: 0, target: 3 },
    { source: 0, target: 4 },
    { source: 1, target: 5 },
    { source: 2, target: 5 },
    { source: 2, target: 5 },
    { source: 3, target: 4 },
    { source: 5, target: 8 },
    { source: 5, target: 9 },
    { source: 6, target: 7 },
    { source: 7, target: 8 },
    { source: 8, target: 9 }
  ]
};
```
```javascript
var force = d3.layout.force()
  .nodes(dataset.nodes)
  .links(dataset.edges)
  .size([w, h])
  .linkDistance([50]) // <-- New!
  .charge([-100]) // <-- New!
  .start();

Next, we create an SVG line for each edge:

```javascript
var edges = svg.selectAll("line")
 .data(dataset.edges)
 .enter()
 .append("line")
 .style("stroke", "#ccc")
 .style("stroke-width", 1);
```  

Note that I set all the lines to have the same stroke color and weight, but of course you could set this dynamically based on data (say, thicker or darker lines for “stronger” connections, or some other value).

Then, we create an SVG circle for each node:

```javascript
var nodes = svg.selectAll("circle")
 .data(dataset.nodes)
 .enter()
 .append("circle")
 .attr("r", 10)
 .style("fill", function(d, i) {
 return colors(i);
 })
 .call(force.drag);
```
Get some CSV-based data from here or here or elsewhere
  - if the data is too big you can down-sample it

Your D3-based visual interface should be able to (all 10 pts):
  1. pick a variable and bin it into a fixed range (equi-width) of your choice
  2. create a bar chart of the variable you picked in 1.
  3. using a menu, allow users to select a new variable and update chart
  4. only on mouse-over display the value of the bar on top of the bar
  5. on mouse-over make the bar wider and higher to focus on it
  6. on mouse-click transform the bar chart into a pie chart (and back)
  7. mouse moves left (right) should decrease (increase) bin width/size

An additional 10 pts for elegant implementation/function

Extra credit (10 pts):
  - on mouse-click create a force-directed layout using a chosen distance
Deliverables

You need to upload the following by the due date

- 2-3 page report with illustrated description of your program’s capabilities and implementation detail
- add code snippets to show how you did things
- mpeg or avi video file that shows all features of your software in action
- important: do not reveal your identity on the submission itself (to enable double-blind peer feedback)

Grading

- TA will pick students at random for thorough code review sessions
- you better know your code !!!
- so, please do not just copy code beyond the D3 templates
- or even worse, videotape someone else’s program
Aka, cheating

Discussion with your class mates (but not others) is OK

Cut and paste from any source is **not** OK
- any suspected activity of this kind will result in zero points
- also for the person providing the original
- two-strikes and out rule is in effect (including an academic misconduct report)
- this includes any feeble attempt to cover the tracks somehow

Stay honest and resist the temptation!