
CSE 564: Computer Graphics

Lab 1 Setup

Klaus Mueller

Computer Science Department

Stony Brook University

Assignment

Build a user interface that supports
• file read and write
• menu buttons
• various image processing routines you learned about in class
• exit

Image processing routines:
• per-pixel operations: brighten, color manipulations
• linear filtering: blur, sharpen, edge detect, emboss
• non-linear filtering: median smooth, bilateral filter
• resampling: scale, rotate, special effects
• artistry: painterly, non-photorealistic effects, mood light

User Interface

There are many choices, determined by:
• flexibility
• appearance
• support
• learning curve
• most have visual GUI (Graphical user Interface) builders

FLTK
• public domain (http://www.fltk.org)
• C/C++
• OpenGL for graphics rendering (we will teach with OpenGL)

.NET
• commercial, Microsoft
• supports C/C++, C#
• DirectX for graphics rendering

Others: Qt,

FLTK

Download from http://www.fltk.org
• 1.x version (not 2.x or 3.x) is recommended
• need to build with Visual Studio C/C++
• various libraries (debug and release)
• lots of online documentation

GUI editor FLUID
• allows construction of GUI
• writes .cpp files for VC projects
• need to link buttons with C-functions

FLUID

GUI under design

FLUID
interface

ReadFile button designer

Main.cpp

#include <FL/Fl.H>

#include "Gui.h“ // built by fltk

// main routine: builds the GUI, shows it, then goes into an endless event-driven loop

Gui *gui;

main(int argc, char *argv[])

{

gui=new Gui; // makes the GUI

gui->show(); // shows the GUI

return Fl::run(); // returns and waits for events (mouse-click)

}

Gui.cpp

File built by fltk
• can choose any other name when saving with FLUID
• in this case you get gui.cpp and gui.h
• maps all events to function calls

Function call app->readFile()

app is a C++ class in application.cpp

Image Formats

Read/write images
• PPM is a really easy format to read and write
• can use irfanview to convert any image to ppm

PPM format
• first line: P6 // code
• second line: nx ny // # of pixels in x and y direction
• third line: 255 // number of levels
• sometimes there is a comment line starting with #
• next lines: (binary) pixel values in x-axis order, r g b r g b r g b …
• example:

P6
created by irfanview
100 256
255
lots of 8-bit numbers

OpenGL

To show the image you need to know some OpenGL (or
DirectX)

Brief introduction
• more about this later when we talk about 3D

Best is to make a separate class DisplayWindow()
• call it with gui->displayWindow->redraw();
• constructor method:

DisplayWindow::DisplayWindow(int x,int y,int w,int h,const char *l)

: Fl_Gl_Window(x,y,w,h,l)

{

// clear window

glClearColor(0.0,0.0,0.0,0.0);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

}

Display Window

void DisplayWindow::draw() {

if (!valid()) {

glLoadIdentity(); glViewport(0,0,w(),h()); gluOrtho2D(0,w(),0,h()); // set up viewport and transform

make_current();

}

// clear window first

glClearColor(0.0,0.0,0.0,0.0); // white

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // color and depth

if(curImage.nx==0) return;

// display the image in the center of the window

// h() returns the height of the window, w() returns the width

glPixelStorei(GL_UNPACK_ALIGNMENT,1); // byte-alignment

glRasterPos2i((w()-curImage.nx)/2,(h()-curImage.ny)/2); // makes sure the image appears centered

glDrawPixels(curImage.nx,curImage.ny,GL_RGB,GL_UNSIGNED_BYTE,curImage.data); // draw image

}

