Strengths:
• is creative
• can think abstractly
• can recognize patterns
• can handle natural language well

Weaknesses:
• has low computational bandwidth
• has low memory
• limited ability to do symbolic math
• has low endurance
Computer

Strengths:
- has high computational bandwidth
- has high memory
- high ability to do symbolic math
- has high endurance

Weaknesses:
- not creative
- cannot think abstractly
- cannot recognize patterns well
- cannot handle natural language well
Supercomputer

Strengths:

• even higher computational bandwidth
• even higher memory
• even higher ability to do symbolic math
• even higher endurance

Weaknesses:

• still not creative
• still cannot think abstractly
• still cannot recognize patterns well
• still cannot handle natural language well
Create Human Computer Synergy

Interaction

Human

Computer

Supercomputer
Humans Are Diverse!
Humans: Software and Hardware

Human’s hardware

• hands, arms, legs → the physique
• brain → the processor

Human’s software

• habits
• preferences
• cultural backgrounds
• languages

Diversity and limitations

• one size fits all is difficult
• must find the common denominator
• peer pressure helps
• seduction by marketing helps
Computer’s hardware imposes
- hands, arms, legs → the physique
- the brain → the processor

Computer’s software imposes on
- habits
- preferences
- cultural backgrounds
- languages

Diversity and limitations
- one size fits all is difficult
- must find the most common audience
- peer pressure helps
- seduction by marketing helps
Computers Are Diverse!
What have you seen in the previous slide?

- keyboard
- mouse
- display
- touchpad
- touchscreen
- speaker
- microphone
- camera
- windows
- icons
- menus

What really matters is how these things are linked to software:

- this defines the ‘behavior’ of the computer
- it what is programmed by humans (for humans) → human centered
- it is what we will study predominantly
The Best User Interface

Best user interface:

• is natural
• is intuitive
• appeals to common sense
• does not require a manual
Bad Design Example #1

Bad:
 • why is this a bad design?
 • which controls go with which rings (burners)?

Better:
 • why is this design better?
Bad Design Example #2

Bad:

• where do you plug the mouse?
• Where do you plug the keyboard?
• top or bottom connector?

• do the color coded icons really help?

Better:

• solution A provides **direct** adjacent mapping between icon and connector
• solution B provides **color coding** to associate the connectors with the labels
Bad Design Example #3

Bad:

• why is this a poor mapping of control buttons (rewind, play, fast forward, fast rewind)?

• because relationship between controls and their movements and the results in the world are not obvious

Better:

• why is this a better mapping?

• because now the control buttons are mapped better onto the sequence of actions (fast rewind, rewind, play and fast forward)
Bad Designs Can Be Costly

Cost
- time
- money
- even lives

Assume you waste 10 minutes a day on bad user interfaces
- bank machine
- radio
- computer
- you name it

Impact
- then 50 millions Koreans would spend 500 million person minutes/day
- that is 3 billion person hours/year lost productivity or leisure for Korea
- that is 60 hours or 2 days lost just for you!
This Course

Teaches you good user interface design

- for synergistic human-computer interaction

- for happy users

- for effective and pleasurable work and leisure
This course will introduce students to the principles of

- human-computer interaction
- computer graphics

The topics covered include:

- picture (image) description and processing
- human visual perception
- user interface design and visual design principles
- clipping, panning, and zooming
- interaction design
- geometrical transformations in 2D and 3D
- 3D rendering, algorithms for raster displays, shading models
- computer animation
- basic research methods and design of HCI experiments

Intro on Computer Graphics to follow
What You Will Need

Enthusiasm and interest in the subject

Some working knowledge in computer programming
 • will have tutorials in a special session each week
 • taught by TA

Some working knowledge of linear algebra
 • will have tutorials in a special session each week
 • taught by TA

Do consider these requirements as unexpected but good side-effects of this course!
This is a mixed undergrad (UG) + graduate (G) student course

Assignments: 30% (UG), 50% (G)
 • lab projects (UG, G, 30%)
 • homework (UG, 20%)

Midterm: 30% (UG)
 • closed books, closed notes, bring calculator

Final: 40% (UG)
 • comprehensive, but leaning towards later material
 • closed books, closed notes, bring calculator

Final project: 50% (G)
Policy

You must write your own code and do your own homework

- no cut and paste from other code or text
- must cite the sources of any ideas, code or text

It is OK to:

- discuss ideas, approaches, etc. with other students
- get ideas from information in books, web sites, etc.
- get “support” code from example programs
- but, you must reference your sources of information in your report

It is NOT OK:

- share code or text with another student
- use ideas, code, or text acquired from another sources without citing

Violations:

- constitute academic misconduct
- will be brought to the attention of the university academic misconduct committee
Submissions:
- all done using the Stony Brook University Blackboard facility
- grades will be published on course webpage (de-identified)
- up to you to check if you received a proper grade for your work
- feel free to discuss your grade if unhappy

Late policy
- you have a budget of 10 days for late submission without penalty
- spend them as you wish over the course of the semester
- upon expending the budget there will be a 10% per day late penalty
- late penalties are imposed precisely at midnight on the due date
- no extensions given to individuals unless it is an extreme case of a proven emergency

Avoid getting penalized for late submission
- plenty of time to do the labs but start right away
- overall extensions are given in case of general equipment failure or other, universal, uncontrollable, devastating circumstances
If you have a physical, psychological, medical or learning disability that may impact your course work, please contact the Disability Support Services office. They will review your concerns and determine, with you, what accommodations are necessary and appropriate. All information and documentation of disability is confidential.

Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information, go to the following web site: http://www.ehs.sunysb.edu and search Fire Safety and Evacuation and Disabilities.
Course Information

Course webpage

- get all information, course notes, assignments, grades from there
- but use Blackboard for submission (not email)

TA:

- Shenghui Cheng (for EST 323)
- office hours: TBD
- recitation session time and location: TBD
- phone: 010-3283-2415
- email:shecheng@cs.stonybrook.edu