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Strange Effects

Ever tried to reduce the size of an image and you got this? 

We call this effect ‘aliasing’

Better

But what you really wanted is this:

We call this ‘anti-aliasing’

Why Is This Happening?

The smaller image resolution cannot represent the image 
detail captured at the higher resolution 

• skipping this small detail leads to these undesired artifacts



Overview

So how do we get the nice image?

For this you need to understand:

• Fourier theory

• Sampling theory

• Digital filters

Don’t be scared, we’ll cover these topics gently

Periodic Signals

A signal is periodic if s(t+T) = s(t)

• we call T the period of the signal

• if there is no such T then the signal 
is aperiodic

Sinusoids are periodic functions

• sinusoids play an important role

Write as:

• where ϕt is the phase shift and A is 
the amplitude

Alternatively:

• where f=1/T is the frequency

• we may write ω = 2πf
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Fourier Theory

Jean Baptiste Joseph Fourier (1768-1830)

His idea (1807):

• Any periodic function can be rewritten                                                     
as a weighted sum of sines and cosines                                              
of different frequencies.

Don’t believe it?

• neither did Lagrange, Laplace, Poisson and                                         
other major mathematicians of his time

• in fact, the theory was not translated into English until 1878

But it’s true!

• it is called the Fourier Series

Example

Consider the function:

g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)



Frequency Spectrum

Consider the function:

g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)
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the function’s frequency spectrum

Further Example (1)
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Further Example (2)
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Further Example (4)
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The Importance of the Frequency Spectrum

We observe:

• oscillations of different frequencies add to form the signal 

• there is a characteristic frequency spectrum to any signal

• sharp edges can only be represented (generated) by high frequencies

signal 

(approximate square/box function)
its frequency spectrum

The DC Component

The first component of the spectrum is the signal average DC

‘DC component’ = signal average

The Math…

The example just seen has the following Fourier Series:

• most of the time the phase is not interesting, so we shall omit it

In fact, this is an interesting series: the sinc function

• we shall see more of it soon

We can convert any discrete signal into its Fourier Series (and 
back)

• this is called the Fourier Transform (Inverse Fourier Transform)
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Fourier Transform

s(t) S(k)
Inverse Fourier Transform



Fourier Transform of Discrete Signals: DFT

Discrete Fourier Transform (DFT)

• assumes that the signal is discrete and finite

• we have N samples, from which we can calculate N frequencies

• the frequency spectrum is discrete and it is periodic in N
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Periodicity

Images are discrete signals

• so their frequency spectra are finite and periodic (see last slide)

• and therefore they have an upper limit (a maximum frequency)

Images are also finite (in size)

• the DFT assumes that they are also periodic

• as odd as this may sound, this is the underlying assumption

Therefore:

• frequency spectra are finite and periodic

• images are also finite and periodic

Keep this in mind for now

• it will help explain the strange resizing effects presented before

Now, What About the Complex Exponential…

It is Fourier’s way to encode phase and amplitude into one 
representation

• to understand it better, let’s first review complex numbers

• and then see what it means in the Fourier context

Note, we only discuss this to illustrate the full picture

• essential for this class is only to know the concept of frequency 
spectrum discussed thus far

Recall: Complex Numbers

A complex number c has a real and an imaginary part:

• c = Re{c} + i Im{c} (cartesian representation)

• here, i always denotes the complex part

We can also use a polar representation:
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Application: Complex Sinusoids

Exponential exp

• when a > 0 then exp increases 
with increasing x

• when a < 0 then exp
approximates 0 with increasing x

Complex exponential / sinusoid:

As before

• the cos term is the signal’s real 
part

• the sin term is the signal’s 
imaginary part

• A is the amplitude, ϕ the phase 
shift, k determines the frequency 
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Two-Dimensional Fourier Spectrum

u-axis

v-axis
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Some Example Spectra
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Effects of Missing Spectra Portions: Axial 

(a) Spectrum along u determines detail along spatial x

(b) Spectrum along v determines detail along spatial y

(a)

(b)
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Effects of Missing Spectra Portions: Radial

(a) Lower frequencies (close to origin) give overall structure

(b) Higher frequencies (periphery) give detail (sharp edges)

(a)

(b)
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The Math… 2D DFT

The 2D transform:

Separability:

• if M=N, complexity is 2·O(2N3)
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Fast Fourier Transform (FFT)

Recursively breaks up the FT sum into odd and even terms:

Results in an O(n·log(n)) algorithm (in 1D)

• O(n2·log(n)) for 2D (and so on)
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Fast Fourier Transform (FFT)

Gives rise to the well-known butterfly Divide + Conquer 
architecture

• invented by Cooley-Tuckey, 1965)
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