Introduction to Medical Imaging

Lecture 3: Linear System Theory

Klaus Mueller

Computer Science Department
Stony Brook University

Even / Odd Functions

Signal is even if $s(-x) = s(x)$
- denote as s_e

$$
\int_{-\infty}^{\infty} s_e(x)dx = 2 \int_{0}^{\infty} s_e(x)dx
$$

Signal is odd if $s(-x) = -s(x)$
- denote as s_0

$$
\int_{-\infty}^{\infty} s_0(x)dx = 0
$$

Can write any signal as a sum of its even and odd part:

$$
s(x) = \frac{1}{2} \left[s(x) + s(-x) \right] + \frac{1}{2} \left[s(x) - s(-x) \right] = s_e(x) + s_0(x)
$$

Periodic Signals

A signal is periodic if $s(x+X) = s(x)$
- we call X the period of the signal
- if there is no such X then the signal is aperiodic

Sinusoids are periodic functions
- sinusoids will play an important role in this course

Write as:

$$
A \sin\left(\frac{2\pi x}{X} + \phi_x\right)
$$

- where ϕ_x is the phase shift and A is the amplitude

Sinusoids can combine
- they can also occur in higher dimensions:
Complex Numbers

A complex number c has a real and an imaginary part:

- $c = \text{Re}(c) + i \text{Im}(c)$ (cartesian representation)

where, i always denotes the complex part

We can also use a polar representation:

$$A_c = \sqrt{\text{Re}(c)^2 + \text{Im}(c)^2}$$

$$\varphi_c = \tan^{-1}\left(\frac{\text{Im}(c)}{\text{Re}(c)}\right)$$

Now think of c as a periodic signal $s(x)$:

- then the pointer (A_c, φ_c) rotates with period X, that is, it completes one rotation after each integer multiple of X
- if there is a phase shift φ_x then the pointer simply is already located at (A_c, φ_c) when $x=0$
- considering c a 2D vector: $\text{Re}(c) = A_c \cos(\varphi_c)$ and $\text{Im}(c) = A_c \sin(\varphi_c)$

Important Signals (1)

Exponential \exp

$\exp(ax) = e^{ax}$

- when $a > 0$ then \exp increases with increasing x
- when $a < 0$ then \exp approximates 0 with increasing x

Complex exponential / sinusoid:

$A e^{(2\pi kx + \phi)} = A(\cos(2\pi kx + \phi) + i \sin(2\pi kx + \phi))$

As before

- the \cos term is the signal’s real part
- the \sin term is the signal’s imaginary part
- A is the amplitude, φ the phase shift, k determines the frequency

Important Signals (2)

Rectangular function:

$$\Pi\left(\frac{x}{2L}\right) = \begin{cases} 1 & \text{for } |x| < L \\ \frac{1}{2} & \text{for } |x| = L \\ 0 & \text{for } |x| > L \end{cases}$$

Step function:

$$u(x - x_0) = \begin{cases} 0 & \text{for } x < x_0 \\ \frac{1}{2} & \text{for } x = x_0 \\ 1 & \text{for } x > x_0 \end{cases}$$

Important Signals (3)

Triangular function:

$$\text{Tri}\left(\frac{x}{2L}\right) = 1 - \left|\frac{x}{L}\right|$$

- 1 for $|x| < L$
- 0 for $|x| > L$

Normalized Gaussian:

$$G_n(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- μ is the mean
- σ is the standard deviation

- normalized means that the integral for all x is 0
Sinc function:

\[
sinc(x) = \frac{\sin(\pi x)}{\pi x}
\]

- \(sinc(0) = 1\) (L'Hopital's rule)

Dirac impulse:

\[
\delta(x - x_0) = 0 \quad \text{for} \quad x \neq x_0
\]

\[
\int_{-\infty}^{+\infty} \delta(x - x_0) \, dx = 1
\]

- an important property is its sifting property:

\[
\int_{-\infty}^{+\infty} s(x) \delta(x - x_0) \, dx = s(x_0)
\]

a “needle” spike of infinite height at \(x = x_0\)

System response \(L\):

\[
s_o = L\{s_i\}
\]

- might be a function of time \(t\) or space \(x\)

\[
s_o(t) = L\{s_i(t)\} \quad \text{or} \quad s_o(x) = L\{s_i(x)\}
\]

Finding the mathematical relationship between in- and output is called **modeling**

Linear systems fulfill **superposition principle**:

\[
L\{c_1s_1 + c_2s_2\} = c_1L\{s_1\} + c_2L\{s_2\} \quad \forall c_1, c_2 \in \mathbb{R}
\]

where \(s_1\), \(s_2\) are arbitrary signals

- for example, consider an amplifier with gain \(A\):

\[
L\{c_1s_1 + c_2s_2\} = A(c_1s_1 + c_2s_2)
\]

\[
= c_1As_1 + c_2As_2 = c_1L\{s_1\} + c_2L\{s_2\}
\]

Time-invariance (shift-invariance = LSI):

- properties of \(L\) do not change over time (spatial position), that is:

\[
s_o(x) = L\{s_i(x)\} \quad \text{then} \quad s_o(x - X) = L\{s_i(x - X)\}
\]

A system’s response to a Dirac impulse is called **impulse response** \(h\):

\[
\delta(t)
\]

Start with:

\[
s_i(x) = \int_{-\infty}^{+\infty} s_i(\xi)\delta(x - \xi) \, d\xi
\]

Then write:

\[
s_o(x) = L\{s_i\} = \int_{-\infty}^{+\infty} s_i(\xi)L\{\delta(x - \xi)\} \, d\xi = \int_{-\infty}^{+\infty} s_i(\xi)h(x - \xi) \, d\xi
\]
Impulse Response (2)

In practice we use non-causal impulse responses
- appear symmetric in their waveform

Convolution

The expression
\[s_o(x) = \int_{-\infty}^{\infty} s_i(\xi) h(x-\xi) d\xi = s_i * h \]

is called convolution, defined as:
\[s_i(x) * s_2(x) = \int_{-\infty}^{\infty} s_i(\xi) s_2(x-\xi) d\xi = \int_{-\infty}^{\infty} s_i(x-\xi) s_2(\xi) d\xi \]

Procedure:
for each \(x\) do:
1: mirror \(s_2\) about \(\xi = 0\) (change \(\xi \to -\xi\))
2: translate mirrored \(s_2\) by \(\xi = x\)
3: multiply \(s_1\) and mirrored \(s_2\)
4: integrate the resulting signal

See next slides for an example and detailed explanation…

Convolution: Example

Example \(x=0.7\):
\[s_1(x) * s_2(x) = \int_{-\infty}^{\infty} s_1(\xi) s_2(x-\xi) d\xi \]

1: mirror \(s_2\) about \(\xi = 0\)
2: translate mirrored \(s_2\) by \(\xi = 0.7\)
multiply with \(s_1\)
3: integrate over all \(\xi\)
4: write integration result at \(x=0.7\)

Convolution: More Examples

Animated gifs:
- red, blue: convolved signals
- green: convolution result

Two boxes
Two gaussians
Convolution: Detailed Explanation

Mirroring:
• when you take a function \(f(t) \) and mirror it about the y-axis then you get a new function \(f'(t) = f(-t) \)

For convolution:
• you have two functions: \(f_1(t) \) and \(f_2(t) \)
• you would like to compute:
 \[
 f(x) = \int_{-\infty}^{\infty} f_1(t) f_2(x-t) dt
 \]
• but in this form: \(t \) increases in \(f_1 \) and decreases in \(f_2 \), which is not convenient
• to fix this, you mirror \(f_2(x-t) \) into \(f_2^*(t-x) = f_2(-x-t) \)
• now the convolution writes:
 \[
 f(x) = \int_{-\infty}^{\infty} f_1(t) f_2^*(t-x) dt = \int_{-\infty}^{\infty} f_1(t) f_2^*(t-x) dt
 \]
• at this point you need \(f_2^*(t) \) which is obtained by mirroring \(f_2(t) \): \(f_2^*(t) = f_2(-t) \)
• now you can do the intuitive right-sliding of \(f_2^* \) for growing \(x \)

Convolution Properties

Also defined for multi-dimensional signals:

\[
\begin{align*}
 s_1(x,y) * s_2(x,y) &= \int_{-\infty}^{+\infty} s_1(x-\xi,y-\zeta)s_2(\xi,\zeta)d\xi d\zeta
\end{align*}
\]

Some important properties:
• commutativity:
 \[
 s_1 * s_2 = s_2 * s_1
 \]
• associativity:
 \[
 (s_1 * s_2) * s_3 = s_1 * (s_2 * s_3)
 \]
• distributivity:
 \[
 s_1 * (s_2 + s_3) = s_1 * s_2 + s_1 * s_3
 \]

Discrete Signals

Typically, signals are only available in discrete form
• reconstruction into a continuous signal (for visualization, etc) occurs by overlapping point spread functions (see previous lecture)
• but all computer processing (convolution and others) is done on the discrete representations
LSI System Response (1)

Now assume the input is a complex sinusoid with $Ae^{2\pi ikx}$ then:

$$s_0(x) = \int_{-\infty}^{+\infty} Ae^{2\pi ik(x-\xi)} h(\xi) d\xi$$

for now, assume $\phi=0$

$$= Ae^{2\pi ikx} \int_{-\infty}^{+\infty} e^{-2\pi ik\xi} h(\xi) d\xi$$

$$= Ae^{2\pi ikx} H = S_i H$$

H is called the **Fourier Transform** of $h(x)$:

$$H = \int_{-\infty}^{+\infty} e^{-2\pi ik\xi} h(\xi) d\xi$$

• H is also often called the **transfer function** or **filter**
• the Fourier transform will be discussed in detail shortly

Complex Sinusoids Revisited (1)

Recall the factor k in the complex sinusoid:

$$Ae^{(2\pi k\xi + \phi)} = A\cos(2\pi k\xi + \phi) + i\sin(2\pi k\xi + \phi)$$

• as k increases, so does the frequency of the oscillation

• note: the higher k, the higher the signal resolution, that is, one can represent smaller signal details (signals that vary more quickly)

Signal Synthesis With Sinusoids

Any periodic signal can be created by a combination of weighted and shifted sinusoids at different frequencies

$$s_0(x) = \int_{-\infty}^{+\infty} A_k \cos(2\pi k x + \phi_k) + i\sin(2\pi k x + \phi_k) dk$$

$$= \int_{-\infty}^{+\infty} A_k e^{i(2\pi k x + \phi_k)} dk = \int_{-\infty}^{+\infty} A_k e^{i\phi_k} e^{2\pi k x} dk$$

$$= \int_{-\infty}^{+\infty} S_i(k) e^{2\pi ikx} dk$$

• A_k is the amplitude and ϕ_k is the phase shift

Incorporating the transfer function, now one for each k:

$$s_0(x) = \int_{-\infty}^{+\infty} S_i(k) e^{2\pi ikx} H(k) dk$$

LSI System Response (2)

H scales, and maybe phase-shifts, the input sinusoid S_i

In essence, we have now two alternative representations:

• determine the effect of L on s_i by convolution with h: $s_i * h$
• determine the effect of L on s_i by multiplication with H: $S_i \cdot H$

$$s_i * h \leftrightarrow S_i \cdot H$$

Since convolution is expensive for wide h, the multiplication may be cheaper

• but we need to perform the Fourier transforms of s_i and h
• in fact, there is a “sweetspot”
• more later…