Lab Assignment 2 - CSE 377/591 Fall 2011
Due: Tuesday, October 25 2011, 11:59pm

In this lab you will implement some of the image processing routines you learned about in class, using matlab. As
before, submit all your work in a zip file on blackboard. Matlab is available in the CS department’s UG and G labs.
See me if you need an account. If you run it at home, you will need the image processing toolbox as well. Check
the lab page for some example images, but look for more on the web. Also make sure you look at the web page for
descriptions of the image processing tool box routines, the link is given on the lab page. Please start early.

Here is what you need to submit:

a) All .m files

b) A report that shows, for each question, the respective matlab code, the appropriate output (numbers, plots,
images, spectra), and a narration of these (that is, a discussion of your solution and your findings, and any observa-
tions you may have made). Any questions asked in the text below should also be answered in the report. This report
will form the basis for grading. Be professional about it.

Important:

(1) Only do the following with grey-level images (convert images with rgb2gray()). Note, even when downloaded
images appear to be greylevel, they may still be color RGB images. To be safe, always perform rgb2gray().

(2) If any image or spectra appear colored, set the color map to grey-level using colormap(‘gray’). A window will
pop up. This will be used to display the processed image.

1. Write a function gconv(image,sigma) that applies Gaussian convolution to the 2D image for the given value of
sigma, using a normalized gaussian. Matlab has a function fspecial() which you can use to create a 2D Gaussian.
Note, for larger sigmas you need to specify a larger size. Just leave out the ““;” to make sure that the filter matrix
falls off sufficiently towards 0. For example, for g=fspecial('gaussian’, [3 3], 2) the matrix is not large enough, but
for g=fspecial('gaussian’, [10 10], 2) it is. And if you choose Gaussians with larger sigmas you will need even
greater ranges than [10, 10]. If you do not make the filter array large enough, you will not get the desired degree of
blurring. Display g to see that it is sufficiently large. Use the matlab operator imfilter() for the convolution. Display
the result. Try this with different sigmas. Practical hint: A Gaussian with sigma=0.5 will do some smoothing, keep

doubling the sigma for more and more smoothing. Remember to make the filter matrix large enough.

2. Now write a function bconv(image,L) that convolves the image with a box filter. Use the fspecial() function
again, now with the ‘average’ filter, which is a normalized box. You can set different widths. Display the resulting
images as well. Try this with different box sizes. A box filter of width = 3 will do a minimum amount of smooth-
ing. Wider box filters will do more. Compare with the results you got with the Gaussian filter for a comparable
amount of smoothing.

3. Now find the (2D) Fourier transforms of the original images, as well as of the blurred ones you computed above.
You can use matlab’s fft2() (2D Fast Fourier Transform) function for this (you may be asked to convert them first to
double()). Then, use fftshift() to put the origin of the computed spectrum (the zero-frequency band, the DC compo-
nent, the average term) into the center of the plot. Following, use the abs() function to compute the magnitude of
each (complex) frequency term before plotting. Using log() will bring out smaller values better, or alternatively
you could bracket the values using specialized parameters in the display command (see the matlab help files). Use
the routine imagesc() for this display since your value range will likely be outside [0, 255]. In your report put the
spectra images next to the corresponding spatial images.

Recall, from question 6 and 7 of the lab 1 assignment, the sinc-pattern (lobes separated by zeros) in the frequency
spectrum of the box function. Do you observe a pattern in the frequency transforms of the box-smoothed images as
well (as you use larger and larger boxes)? Where do these patterns come from? Do the Gaussian smoothed images
have that? Compare the Gaussian-filtered images with the box-filtered images, both in the spatial and in the fre-
quency domain. Can you relate what you see in the frequency domain with what you see in the spatial domain
(look at artifacts and patterns there)?

4. Now let’s have a look at images with spot/speckle noise. There are a few provided in the image set available on



the lab page. Smooth a nosiy image using filter developed above and compare the result with that obtained using a
median filter. Use matlab’s function medfilt2() to achieve the latter. What is more effective here and why? Will
median filtering be useful for general blurring? Note, medfilt2() expects a grey level image, so use rgb2gray() first.

5. Implement a routine edgeDetect(image) that performs edge detection with the (Sobel) mask described in the
notes. You can use fspecial() to define this filter as well. You need to create 2 intermediate images, one for the x-
derivative and one for the y-derivative (use the transpose operator ‘ for this, that is, if sf'is your Sobel filter in y,
then sf” is your Sobel filter in x) . Now you need to combine the 2 (x and y edge) images using the absolute value
mechanism (that is, compute edge_img=abs(imgx)+abs(imgy)). Use imagesc() to display the result, since the val-
ues are out of the [0, 255] bounds again. Display all 3 images, the x-derivative (imgx), the y-derivative (imgy), and
the combined image (edge_img). Use the subplot feature of matlab to create this composite display. Note, matlab
also has an edge() function, compare your results with the results obtained using that function.

6. Implement a routine called unsharpMask(image, sigma, alpha) that does unsharp masking with different blur-
ring factors sigma and different weighting factors alpha, as discussed in the notes. Use your own function, and not
the function matlab provides. Do you think the images reveal more information than the edge images, and in what
sense? Use Google Image to find interesting images that show off the strength of this function. Submit the full-res-
olution images with your report.

7. Compute the histogram of an image using matlab’s imhist() function. Use a grey level image for this (or convert
a color image to grey before you go on). Take an image with a narrow intensity histogram (that is, an image that is
too dark, too bright, or has little contrast). Then widen its intensity range using a simple transfer function that
scales the dominant histogram intensity range [I_min, I_max] to the range [0, 255]. For this, use a linear function
that maps I_min to 0 and I_max to 255 and all intensities / within that range to 255 * (I - I_min) / (I_max - I_min).
Now use this transfer function to map the pixel values of the image (representing the x-axis values of the function)
to pixel values in the result function (representing the y-values of the function). You need a double for-loop (the
outer for y and the inner for x) to translate each pixel. You want the transfer function to map imput image values to
the desired output image values. The range in which you convert is [/_min, I_max]. First set up an array x=(0: 1 :
255). Then set up the transfer function y to y(I_min+1 : I_max+1) = (255*(x(I_min+1 : I_max+1) - I_min)/(I_max
- I_min)). Note, we add a factor of 1 to the indices in x and y since in matlab arrays start at 1, not at 0. Now set all
values below I_min to 0 and those above I_max to 255, by writing y(1 : I_min)=0 and y(I_max+2 : 256)=255. Plot
the transfer fuinction to make sure it looks OK. Now you can use y as the transfer_function as stated above. Com-
pare this what you get with the matlab function imadjust().

You can use this function also for windowing for enhancing a certain selected intensity range in order to make
small detail clearer in this range. Compare the result obtained using histogram equalization (again, use Google
Image to find good images that show off the strength of the contrast enhancement and windowing. Submit the full-
resolution images with your report.

Extra credit (+20%): Implement the multi-scale image enhancement framework discussed in class. First create the
multi-scale gaussian derivative-filtered image pyramid. Then pass each detail image through an (non-linear) inten-
sity transfer function to scale up low intensities and scale down high intensities. Then re-compose the processed
details into an image. You should get an overall clearer image.

Some hints on expected results:

(a) Larger boxes and larger sigmas should produce blurrier images and narrower frequency spectra (that is, the
higher components are attenuated).

(b) The blurriness and narrowing should be isotropic (that is, in all directions, not just along the x- or the y-axis).

(c) In the edge-detected image you should see just the edges, not much else.



Some examples:

In focus Simple Gaussian blur

Gaussian blurring

4 s 1 1
100 150 z00 255

histogram and edge detection

unsharp masking (left: original, center and right: more detail added back in)



