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Ideal Assumptions

Dense and regular sampling of the
Fourier domain — many projections

Noise free projections

Straight rays

Non-ldeal Scenarios

Projections might be:
* sparse
* acquired over less than 180°
* noisy

R
20 projections SNR=10
low-dose CT

high-dose CT

Rays might be non-linear (curved, refracted, scattered,...)
* for example: refraction in ultrasound imaging

Dealing With Non-ldeal Scenarios

Iterative methods are advantageous in these cases

They can handle:

* limited number of projections

* irregularly-spaced and -angled projections

* non-straight ray paths (example: refraction in ultrasound imaging)

* corrective measures during reconstruction (example: metal artifacts)

* presence of statistical (Poisson) noise and scatter (mainly in
functional imaging: SPECT, PET)




In medical imaging:
* Munknown voxels (depending on desired object resolution)
* N known measurements (pixels in the projection images)
* represent voxels and pixels as vectors V and P, respectively

WV WY, Wy Yy =D
Wy WV, + WV =Dy
Wval +WN2V2 +"'WNMVM = pN

* this gives rise to a system W-V=P

Solving for V

The obvious solution is then:
* compute V=WT'-P
The main problem with this direct approach:

* Pis not be consistent due to noise — lines do not intersect in solution
* This turns W-V=P into an optimization problem
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Optimization Algorithms

Algebraic methods
* Algebraic Reconstruction Technique (ART), SART, SIRT
* Projection Onto Convex Sets (POCS)
Sparse system solvers
* Gradient Descent (GD), Conjugate Gradients (CG)
¢ Gauss-Seidel
Statistical methods

* Expectation Maximization (EM)
* Maximum Likelihood Estimation (MLE)

All of these are iterative methods:
* predict - compare — correct — predict — compare — correct ...

Big Picture: Iterative Reconstruction

Before delving into details,

let's see an iterative scheme at work




lterative Reconstruction Demonstration: SART

Iterative Reconstruction Demonstration: SART

Foundations: Vectors

Consider two vectors, aand b X,
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Foundations: Scalar Projection

Scalar projection of a onto b: X,
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- the scalar projection is the dot product with /b/ =1 (unit vector)
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Foundations: Line Equation

Foundations: Distance From Line
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The vector ais the unit vector normal to the line /, For any other point x’not on /, the scalar projection of x’onto a
. . . - will be:
The length y is the perpendicular distance of /, to the origin . ,
x-a=y'=y+Ay
For any point x:
* if xis on I, then the scalar projection of x onto a will be:
xX-a=y
Foundations: Closest Point Foundations: Solving an Equation System
X Assume you have two equations to solve for solution point
? x l X=(X1,X,)
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Foundations: Iterating to Solution

Of course, you could solve this equation via Gaussian
elimination

* we shall take an iterative approach instead

Start with some point x©=(x,,x,)

Foundations: Iterating to Solution

Pick an equation (line, say /,) and find the closest point to x(@

* use the approach outlined before
* this gives a new point x(")

Foundations: Iterating to Solution

Iteratively
* pick alternate equations (lines) and project
* the solution will converge towards x;
* the more iterations the closer the convergence

Foundations: Extension to Higher Dimensions

Three dimensions:
* 3 equations with 3 unknowns

N dimensions:
* N equations with M unknowns
* Mcan be less or greater than N
* inconsistent (most often) or not

© mathwarshouse com




Specifics to Medical Imaging

In medical imaging:
* Munknown voxels (depending on desired object resolution)
* Nknown measurements (pixels in the projection images)
* represent voxels and pixels as vectors V and P, respectively
WM WY, He WYy =Py

Wy W, +W22V2 +"'W2MVM =D

Wy TWoV, Wy Vi =Dy

* this gives rise to a system W-V=P

Iterate either by
* ray by ray (Algebraic Reconstruction Technique, ART)
* image by image (Simultaneous ART, SART)
* all data at once (SIRT)

Iterative Update Schedule: ART

l one pixel at a time

Project

l

Correct

l

Backproject

Iterative Update Schedule: SART

l one projection at a time

Project

l

Correct

l

Backproject

Iterative Update Schedule: SIRT

i l all projections

Project ;
Correct
Backproject "

__________________________________




lterative Reconstruction Demonstration: SART Iterative Reconstruction Demonstration: SART

SART SART

Iteratively solves W-V=P Projection
Projection (into pixel)
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SART

Correction factor

computation o _ .
Projection (into pixel)

Scanned pixel -
\‘pl T ZVZ ‘/‘}ll
Normalization z‘ I
at pixel i i I\
\i‘\+Lwﬂ
[

f+
ZZ%
i

S

|k
v, _W+ﬂ

e

SART

Backprojection
Projection (into pixel) BaPkpfojeCﬁOﬂ
(into voxel)
Scanned pixel 5 ]
Normalization Z il "
at pixel i : ij
Pretl — 57 L2 Wi
k+1 k
VP =V 4 A .
J J o’

28 A

SART

Voxel normalization
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SART

Next projection

Gradient Descent

ic f f ;
Quadratic form of a vector f(x):%xTAx—bT)Hc

* this equation is minimized when A-x=b

* this occurs when f(x)=0
* thus, minimizing the quadratic form will solve the reconstruction

problem
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Gradient plot

Graph plot Contour plot

Steepest Descent

Start at an arbitrary point and slide down to the bottom of the
parabola
* in practice this will be a hyper-parabola since x, b are high-dimensional
* choose the direction in which fdecreases most quickly
—f (%)) =b—Ax;,

where x,is the current (predicted) solution

* similar to ART but now looks at all equations simultaneously

Figures from J. Shewchuk, UC Berkeley

Steepest Descent

Start at some initial guess X,
* this will likely not find the solution
* need to follow f’(x(oj) some ways and

then change directions
* question is where do we change directions

Some basics:
* error: how far are we away from the solution

€ =X =X

* residual: how far are we away from the correct value of b

Iy =b—Ax,
L =A€(,-) A transforms e into the space of b
Ty == (%)




Steepest Descent

Finding the right place to turn directions is called line search

Xy =X T

To find ow we can use the following requirements:

* the new direction of r must be orthogonal to the
previous: ’
r, =0

Ty To)
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* the residual at x;,  f(x,)) =7,

T
P
0 ‘o

* after some math: 0{=L

Steepest Descent: Summary

Iy =b—Ax;,
T
a=—0 {0
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Shortcoming:

* sub-optimal since some directions might be taken more than once
* this can be fixed by the method of Conjugant Gradients

Conjugant Gradients

Picks a set of orthogonal search directions dyy, d;) dy) ---
* take exactly one step along each
* stop at exactly the right length for each to line up evenly with x

Xisny =X 0
* to determine ¢, use the fact that e, ;) should be orthogonal to d;

T —
d(i) (i+1) =0

d(i)T (¢, +oud;,) =0

T
d; €

o.. =
(0 T
d(i) d(i)

* however, this requires knowledge of e which we do not have

Conjugant Gradients

Solution:
* make the search direction A-orthogonal (or, conjugate)

T T
_dyy Aey  dyr,

. = =
(@) T T
d(i) Ad(i) d(i) Ad(i)

* Atransforms a coordinate system such that two vectors are
orthogonal
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Conjugant Gradients

All directions taken are mutually orthogonal

* each new residual is orthogonal to all the previous residuals and
search directions

* each new search direction is constructed (from the residual) to be A-
orthogonal to all the previous residuals and search directions

Each new search direction adds a new dimension to the
traversed sub-space

* the solution is a projection into the sub-space explored so far

* so after n steps the full space is built and the solution has been
reached

solution

Conjugant Gradients: Summary
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Statistical Techniques

Algebraic/gradient methods do not model
statistical effects in the underlying data

* this is OK for CT (within reason)

However, the emission of radiation from
radionuclides is highly statistical

* the direction is chosen at random

* similar metabolic activities may not emit the
same radiation

* not all radiation is actually collected
(collimators reject many photons)

* in low-dose CT, noise is also a significant
problem

~
attenuating object (1)

Foundations: The Poisson Distribution

Also called the law of rare events

* itis the binomial distribution of k as the number of trials n goes to infinity
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* withp=4/n
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Some examples for Poisson-distributed events:
* the number of phone calls at a call center per minute

Need a reconstruction method that can
accounts for these statistical effects

* Maximum Likelihood — Expectation
Maximization (ML-EM) is one such method

* the number of spelling errors a secretary makes while typing a single page

* the number of soldiers killed by horse-kicks each year in each corps in the
Prussian cavalry

* the number of positron emissions in a radio nucleotide in PET and SPECT
* the number of annihilation events in PET and SPECT




Overall Concept of ML-EM

There are three types of variables radicruckies (5) l

10303p

#1: The observed data y(d):

* the detector readings

#2: The unobserved (latent) data x(b):
* the photon emission activities in the pixels (the tissue), x(b)
* these give rise to the detector readings
* they follow a Poisson distribution

attenuating object (1)

#3: The model parameters A(b):

* these cause the emissions
* they are the metabolic activities (state) of interest
* the emissions only approximate those

- they represent the expectations (means, A) of the resulting Poisson
distribution causing the readings at the detectors

Overall Concept of ML-EM

There is a many-to-one mapping of parameters — data
Since there is a many-to-one mapping, many objects are

probable to have produced the observed data

* the object reconstruction (the image) having the highest such
probability is the maximum likelihood estimate of the original object

Goal:
* estimate the model parameters using the observed data

Solution:

* EM will converge to a solution of maximum likelihood (but not
necessarily the global maximum)

Overall Concept of ML-EM

Initialization step: choose an initial setting of the model
parameters

Then proceed to EM, which has two steps, executed
iteratively:

* E (expectation) step: estimate the unobserved data from the current
estimate of the model parameters and the observed data

* M (maximization) step: compute the maximume-likelihood estimate of
the model parameters using the estimated unobserved data

Stop when converged

Initialize model parameters p

— E-Step: estimate unobserved data x using p and observed data y

}

M-Step: compute ML-estimate of p using x

return if converged

Maximum Likelihood Expectation Maximization (ML-EM)

After combining the E-step and the ML-step:
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Maximum Likelihood Expectation Maximization (ML-EM)

Maximizes the likelihood of the values of (object) voxels j
given values at (detector) pixels i

New (k+1) and previous (k)
values of voxel j Backprojection

(into voxel j)
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Algorithm Comparison

SART:

* projection ordering important

* ensure that consecutively selected projections are approximately
orthogonal

* random selection works well in practice

CG:
* much depends on the condition number of the (system) matrix A
* various pre-conditioning methods exist in the literature

* also, line search can be expensive and inaccurate

* various methods and heuristics for line search have been described
in the literature

EM:

* convergence slow if all projections are applied before voxel update

* use OS-EM (Ordered Subsets EM): only a subset of projections are
applied per iteration

Inconsistent Equations

Real life data (as mentioned earlier)

* typically equations (the data) are not consistent

* you may have more equations (data) than unknowns or not enough

* solution falls within a convex shape spanned by the intersection set

* need further criteria to determine the true solution (some prior model)

X
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Determining the True Solution

Need further criteria to determine the true solution

Use some prior model

* smoothness, approximate shape, sharp edges, ...

* incorporate this model into the reconstruction procedure
Example:

* enforce smoothness by intermittent blurring
* but at the same time preserve edges

smooth, good edges

streak artifacts, good edges




