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Introduction

Theory developed by Joseph Fourier (1768-1830)
The Fourier transform of a signal s(x) yields its

frequency spectrum S(Kk)
() .

W s(X)

ISt DC (average) term

/

forward transform

S(K) = F{s(X)} = Ts(x)e‘z”‘kxdx

Sk) inversetransform

s(x) = FY{S(k)} = f S(k)e* ™ dk

Extension to Higher Dimensions

The Fourier transform generalizes to higher dimensions

Consider the 2D case:

forward transform
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inverse transform
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Calculation: Rect Function
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We see that a finite signal in the x-domain creates an infinite
signal in the k-domain (the frequency domain)

* the same is true vice versa




Scaling: GE -

* consider the rect (box): the greater L... “ B
... the higher the spectrum (factor AL) S(k) = 2AL sinc(2zkL)
... the narrower the spectrum (factor L)

* the scaling rule is therefore: 1

P} = ) S(E)

a>1 shrinks s
a<1 stretches s

Symmetry:  F{S(X)} = s(-k)

Linearity: ~ F{as(X)+bs,(X)} = F{as (X)} + F{bs,(X)}

Translation: F{s(x—X,)} = S(k)e "

Convolution: F{s (x) *s,(x)} = §(k)-S,(k)
F{s.(x)-s,(X)} = S(k) * S,(K)

phase shift

Scaling Property

The rect function provides good insight into the relationship of
fine detail and frequency bandwidth
¢ a thin rect can represent/resolve fine detail (think of a signal being
represented as an array of thin rects
a thin rect gives rise to a wide frequency lobe

this illustrates that signals with more detail will have broader
frequency spectra

or, in turn, signals with thin frequency spectra will have low spatial

resolution
s(x)=rect(x/ L)/ L S(k) = sinc(kL)
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Bandwidth of main lobe
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Influence of Transfer Function H

We know (from the last lecture) that:
$(0) = [ S (K& H (k)dk
$(X) =5(X)#h(x) <> §(k)-H(k) = §,(k)
Let's look at a concrete example:
* His a lowpass (blurring) filter: it

reduces the higher frequencies of S
more than the lower ones

Hello World ‘

' after application of H
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Calculation: Dirac Impulse

For s(x)=9(x):
S(k) = F{8(X)} = T&(x)e“z”kxdx =270 =1
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Recall that the Dirac is an extremely thin rect function
* the frequency spectrum is therefore extremely broad (1 everywhere)

This illustrates a key feature of the Fourier Transform:

* the narrower the s(x), the wider the S(k)
* sharp objects need higher frequencies to represent that sharpness




Important Fourier Pairs: Sinusoids

Sinusoids of frequency k, give rise to two spikes in the frequency
domain at +k,

cos(27rk,X) <> (S(K+ky) + S(k—k,)) /2
sin(2rk,x) <> i(S(k+k,) — S(k—k,))/ 2

Recall the pointer analogon in the complex plane
for the cos(): the real signal is given by the addition of the two vectors
(divided by 2), projected onto the real axis
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Important Fourier Pairs: Sinusoids

Sinusoids of frequency K, give rise to two spikes in the frequency
domain at +k,

cos(27rk,X) <> (S(k+ky) + S(k—k,)) /2
sin(2rk,x) <> i(S(k+k,)—S(k—k,))/ 2

Recall the pointer analogon in the complex plane
for the sin(): thereal signal is given by the addition of the two vectors
(divided by 2), projected onto the imaginary axis (note thei in the equation)
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More Important Fourier Pairs

ox)—1
1o 0(k)
cos(2zkyX) > (O(k +k,) + d(k—K,)) /2
sin(2zk,x) <> 1(d(k+k,) —o(k—k,))/2

H(Z—XL) & 2Lsinc(27LK)

A(Z—)l(_) & Lsinc?(7Lk)
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the Gaussian width is
inversely related

In the 2D transform, if f(x,y) is separable, that is, f(x,y)=f(x)f(y),
one may write:

(k1) = F{s(x V) = [ s()e™™ ([ s9e ey

(% y) = FA(S(D} = | St (] e dd

* this comes in handy sometimes




Sometimes the factor 2rk is used as m:

$(0) = | S(@)e”H (0)dw

So far, we have only discussed the continuous space with
(potentially) infinite spectra and signals

¢ that is where it makes sense to use
* but in reality we deal with finite, discrete signals (here k matters)
¢ we shall discuss this next

Fourier Transform of Discrete Signals:

Discrete-Time Fourier Transform (DTFT)
¢ assumes that the signal is discrete, but infinite
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S(w)= . s()e’”

s(n) = j S(w)e™

* the frequency spectrum is_continuous, but is periodic (has aliases)

S(n) EA! S((!))

dliases centered at 2r

Fourier Transform of Discrete Signals: DFT

Discrete Fourier Transform (DFT)
¢ assumes that the signal is discrete and finite

—i2zkn i27zkn

S(k) = ZS(n)e N s(n)=— ZS(k)e N

* now we have only N samples, and we can calculate N frequencies
* the frequency spectrum is now discrete, and it is periodic in N
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Fourier Transform in Higher Dimensions

The 2D transform:

M-IN-1 —i2z(knHm)
S(k,1)=>> sn,me
m=0 n=0
1 M-1N-1 i27(kn+Im)
s(nm) =——>">"S(k,l)e
NM m=0 n=0
Separability:
M-1 —i2zlm N-1 _iozkn

S(kl)_N—Ze M P(k,m) whereP(k,m)=> s(nme N
s(n, m) ——Zle_lz“fm p(n,l)  wherep(n,l) = N7lS(n, m)e_iz'fkn

k=0

* if M=N, complexity is 2-O(2N3)




Fast Fourier Transform (1) Fast Fourier Transform (1)

Recursively breaks up the FT sum into odd and even terms: Gives rise to the well-known butterfly architecture:
N-1 —i2zkn N/2-1 —i2zk2n N/2-1 —i27k(2n+1)
S(k)=>'s(me N => s(2e N + > s(n+lhe N
n= n= n=0
N/2-1 —i27kn —i2zk N/2-1 —i27kn

= Z Seven(n)e N2 +€e N Z Sodd (n)e N2
n=0 n=0

Results in an O(n-log(n)) algorithm (in 1D)
¢ O(n2-log(n)) for 2D (and so on)




