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Introduction

Available cone-beam reconstruction methods:

* exact
* approximate

Our discussion:
* exact (now)
* approximate (next)

The Radon transform and its inverse are important
mechanisms to understand cone-beam CT

Cone-Beam Transform

L=}

a(t) is the source position
along trajectory T’

[ the unit vector pointing
along a particular x-ray beam

The cone-beam transform
reflects the data acquisition
process of measuring line
integrals of the attenuation
coefficient .

large area
detector
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2D Radon Transform

The analytical approach of

reconstruction by projections has to
be done in the context of the Radon y  lineintegral
transform N

Ru(p.60)= [n’zr SF-6-p) u(F)=

normal vector

[dl utp-6+1-6,) &
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Thus in the 2D case the Radon & .
transform R is identical to the O, |  (cos@)
measured cone beam transform Dy | 2 =|._ i |
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with projection angle 8.
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3D Radon Transform

In three dimensions the Radon

transform 93 is a plane integral plane integral

Ru(p.60) = J‘a‘jr S(F-0—p) u(F) =

[an [di, u(p-6+1,-6 ,+1,-6, ,)

- -0

which is a severe complication

compared to the 2D case. As we
will see the link to the measured
cone beam transform Dy is not
trivial.
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Fourier-Slice Theorem in 2D

FRu(p.0)=(Fu)e,-0)

The radial 1D Fourier transform F, of the Radon transform R u

along & is equal to the 2D Fourier transform F, of the object
along & perpendicular to the direction of the projection.
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Fourier-Slice Theorem in 3D

F Ru(p, ) = (Fu)ao, )

The radial 1D Fourier transform F, of the Radon transform 91

along ¢ is equal to the 3D Fourier transform F; of the object p
along 6 perpendicular to the direction of the projection.
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Exact Reconstruction in 2D and 3D

In 2D:

* use 2D inversion formula: the filtered backprojection procedure
* we have seen a spatial technique, only performing filtering in the
frequency domain (in a polar grid)

* but may also interpolate the polar grid in the frequency domain and
invert the resulting cartesian lattice

* employ linogram techniques for the latter (see later)
In 3D:

* use 3D inversion formula: not nearly as straightforward than 2D
inversion

* full frequency-space methods also exist
* more details next (on all)




Exact Inversion Formula

The basic 3D inversion filtered backprojection formula, due to
Natterer (1986):

32

Fle) = — 3521 (P16) 26,

8n?

* 0 is the angle, a unit vector on a unit sphere

* X, p are object and Radon space coordinates, resp.: [p| =x - 6

* involves a 2" derivative of the 3D Radon transform

* the second derivative operator can be treated as a convolution kernel

Some manipulations can reduce the second derivative to a
first derivative, along with convolution operators

L2 o0y do = 3[1 ? e}
f) == f4 7320/ 1010) 2[ 57157 * 55 T * R (010)

* many different variants have been proposed
- for example: Kudo/Saito (1990), Smith (1985)

Grangeat’s Algorithm

Phase 1:
* from cone-beam data to derivatives of Radon data

Phase 2:
* from derivatives of Radon data to reconstructed 3D object

There are many ways to achieve Phase 2
* direct, O(N?)
* atwo-step procedure, O(N*) [Marr et al, 1981]
* a Fourier method, O(N3 log N), [Axelsson/Danielsson, 1994]
* adivide-and-conquer strategy, O(N® log N) [Basu/Bresler, 2002]
* we shall discuss the first three here

But first let us see how Radon data are generated from cone-
beam data

Transforming Cone-Beam to Radon Data
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Transforming Cone-Beam to Radon Data
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Strategy:

* weigh detector data with a factor 1/SA
* integrate along all intersections (lines) between the detector plane
and the required Radon planes
- there are N2 such lines (N lines and N rotations)
* take the derivative in the s-direction (in the detector plane
perpendicular to t)

* weight the 2D data set resulting from a single source position by the
factor SC / cos? B

The order of these operations can be switched since they are
all linear (Grangeat swapped the order of operation 2 and 3)




Radon Data to Object: Direct Method

There are O(N83) data points in Radon (derivative) space

Each is due to a plane integral

radial Fourier
transform

Fourier domain

The direct method simply inserts the plane data into the object
space, one by one
* this is basically the expansion of a point into a plane, defined by (0, p)
* this gives rise to an O(N5) algorithm

Radon Data to Object: Two-Step Method

Derivative of
Radon space

Detector data

From detector data to
derivatives of Radon data

— »

Data acquisition

Interpolation to
vertical planes j

2D -reconstruction of

2D-reconstruction of
horizontal planes

vertical planes

—
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Reconstructed Horizontal planes Vertical planes
object 2D Radon data 3D Radon data
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Radon Data to Object: Two-Step Method

Each vertical plane holds all Radon points due to plane
integrals of perpendicularly intersecting planes

* filtered backprojection reduces the plane integrals to line integrals,
confined to horizontal planes
The horizontal planes are then reconstructed with
another filtered backprojection

Each such operation is O(N3) and there are O(N) of them,
resulting in a complexity of O(N%)

Radon Data to Object: Fourier Space Approach
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Radon Data to Object: Fourier Space Approach

Takes advantage of the O(N log N) complexity of the FFT at
various steps

It also uses linograms [Edholm/Herman, 1987] to reduce 2D
interpolation to 1D interpolation

The complexity is then O(N3log N)

Long Object Problem

Reconstruction of an
ROl should be
feasible from
projection data
restricted to the ROI
and some
surrounding.

The basic 3D Radon
inversion formula
does not fulfill this
request.
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Tuy's Sufficiency Condition

To reconstruct a
point x of the object
any plane
containing x must
have at least one
non tangential
intersection point
with the source
trajectory.
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Concept of Pl-Lines

5(f2) Forapointxona
- Pl line any plane

r
containing x has at
least one
7 : : _
intersection point
= PI

with the Pl segment
seg- associated with the
ment Pl line.

The Pl segment is
that portion of the

a(t,) source trajectory
needed for
reconstructing the
point X.
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Examples of Complete Trajectories

spiral (helix) saddle

two orthogenal (tilted) circles circle and line
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Circular Source Path

A prominent example of an incomplete trajectory

axis of rotation

Due to incomplete data
sampling cone artifacts
show up at sharp z-edges
of objects with high
contrast.

Almost horizontal rays (or
integration planes) are
missing to distinguish
between the members of
the object stack.

Thorax simulation studly.
Coronal slice. C=0, W=200
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3D Radon Data Acquired by a Circular Trajectory
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3D Radon space for a circular scan

By a circular source trajectory a donut shaped region is acquired
in 3D Radon space. At the z-axis a cone-like region is missing.
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Challenges in Cone-Beam Reconstruction

The naive application of the 3D Radon inversion
formula is prohibitive due to

* long object problem
* enormous computational expense

Simplifications have to found to end up in an efficient and
numerically stable reconstruction algorithm preferably in a
shift-invariant 1D-filtered backprojection algorithm

Utilization of redundant data is obscure. Ideally redundancy in
collected Radon planes has to be considered. However, this
approach is suboptimal because:

* itis quite complicated
* underestimates the redundancy of data

* typically in cone beam, the data are highly redundant in
approximation




Transmission CT

A typical reconstruction algorithm
is Filtered Backprojection

X-ray
source
attenuating
object  getector
\ /,
Projection filtering
FFT
multiply by ramp ~.
inverse FFT

pre-weighting Backprojections

Post-weightin

Popular Approximation

Feldkamp-Davis-Kress (FDK) Cone-beam reconstruction

FDK: Filtering

c/‘ s><

filtered
projection data

D

P(Y,2)= P(Y,Z)**g(Y)
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circular pre-weighting —
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! ramp filter
projection data

FDK: Backprojection
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projection coordinates of mapped voxel

r-z¢

P =B (Y (r),Z(r), Y(r)= ——*—D

voxel->projection mapping




FDK: Accumulation, Depth-Weighting

reconstructed voxel

\f(r) =

accumulation for all projections

(d+r-x¢)2P¢(r)d¢

\ depth-weighting
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