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Motivation

Breast cancer is the dominant cancer in women
• in 2007 1.2 million women world-wide had breast cancer 
• 30% mortality (465,000)

• cancer most common in the ducts (ductal carcinoma)
• cancer also frequent in the lobes or lobules (lobular carcinoma)
• cancer least frequent in the nipple, lymphatic vessels or skin

Early Detection: X-Ray Mammography

Most dominant screening method
• projection of a spread-out breast

ductal carcinoma



Early Detection: X-Ray Mammography

Most dominant screening method
• projection of a spread-out breast

Shortcomings: 
• radiation 2-4 times annual natural background radiation 
• high false positive rate � 80% biopsies found benign
• breast compression very inconvenient
• post-compression lesions difficult too localize 

ductal carcinoma

Early Detection: 3D X-Ray

Tomosynthesis and 3D cone-beam CT
• both provide a slice-per-slice view

• much better resolve of small features
• eliminate shortcomings of compression

tomomammo

Early Detection: 3D X-Ray

Tomosynthesis and 3D cone-beam CT
• both provide a slice-per-slice view

• much better resolve of small features
• eliminate shortcomings of compression

Shortcomings: 
• radiation dose still remains

tomomammo

Early Detection: MRI

Most “luxurious” imaging method
• no compression, no radiation

• able to detect tumors in even dense breasts (young women)
• able to detect early-stage tumors

� advisable for women at high risk for breast cancer

MRIX-ray mammo



Early Detection: MRI

Most “luxurious” imaging method
• no compression, no radiation

• able to detect tumors in even dense breasts (young women)
• able to detect early-stage tumors

� advisable for women at high risk for breast cancer

Shortcomings: 
• high cost ($1,000 vs. $100)

MRIX-ray mammo

Early Detection: Ultrasound (Echo)

Promising at first glance:
• no radiation, painless, inexpensive
• in fact, echo (reflective) US routinely used as adjunct modality

echo USX-ray mammo

Early Detection: Ultrasound (Echo)

Promising at first glance:
• no radiation, painless, inexpensive
• in fact, echo (reflective) US routinely used as adjunct modality

Shortcomings:
• relatively poor quality
• cannot differentiate malignant from benign masses

� false positive rate will not improve

echo USX-ray mammo

Ultrasound: Can We Do Better?

Use transmission ultrasound 
• insert breast in water bath
• arrange piezo transducers as a ring around the breast
• one piezo fires and the others listen and record

Record at each sensor:
• Time Of Flight (TOF): time of first detected peak 
• attenuation: amplitude of first detected peak



Ultrasound: Can We Do Better?

Use transmission ultrasound computed tomography (CT)
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Ultrasound: Can We Do Better?

Use transmission ultrasound computed tomography (CT)
• insert breast in water bath
• arrange piezo transducers as a ring around the breast
• each piezo fires in turn while the others listen and record

Record at each sensor:
• Time Of Flight (TOF): time of first detected peak 
• attenuation: amplitude of first detected peak

Possible Setup

Neb Duric, Karmanos Cancer Institute

CT Reconstruction: A Primer

A quick primer:
• reconstruction is via back-projection
• linear rays are typically assumed
• well developed for X-ray data

reconstruction: 

back-projection of all data

acquisition:

rotating fan beam source



Ultrasound CT: Important Distinctions 

In contrast to X-ray CT
• rays are NOT straight

• refraction effects cannot be ignored

The Importance of Refraction

Reconstruction with and without considering refraction 
effects
• phantom experiment (simulated data)
• TOF reconstruction

• the breast is a heterogeneous medium 
� proper refraction modeling is important for high fidelity

• this has been known for a long time

original without refraction with refraction

Energy Propagation Modeling

Ideally one should solve the acoustic wave equation

Obstacles:
• wave solvers are impractical for clinical routine

� must obtain a reconstruction in 5 minutes tops
• existing methods for refraction modeling are awkward
• noisy ultrasound data require iterative reconstruction schemes

� cannot afford costly energy propagation schemes

Energy Propagation Modeling

Ideally one should solve the acoustic wave equation

Obstacles:
• wave solvers are impractical for clinical routine

� must obtain a reconstruction in 5 minutes tops
• existing methods for refraction modeling are awkward
• noisy ultrasound data require iterative reconstruction schemes

� cannot afford costly energy propagation schemes

Our key observations
• sensors look for TOF � the front of the acoustic wave

� wave front tracking approach seems appropriate
• require an efficient wave tracking procedure

� further accelerate on GPUs



Wave Front Tracking

Propose the use of the Fast Marching Method (FMM)
• well known in computer vision
• also often used for distance transforms

FMM tracks the evolution of the frontier interface
Step 1: move front under velocity V of grid points on frontier
Step 2: record frontier arrival time at each grid point as time field
Repeat

T = 0

T = 10

T = 20

Iterative CT Reconstruction: A Primer

Predictor – Corrector scheme

Start off with an initial estimate of the object

Simulate projections using this estimated object
• important: simulator should be physically accurate

� forward projection step

Compute the difference b/w simulated and collected data

Update estimated object by this difference (error)
• spread the corrections across the grid

� back-projection step

Iterate as long as corrections are significant
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More Specifically: SART/SIRT

Correction value

FMM-SART: Forward Projection

frozen grid point            narrow-band grid point

Eikonal equation : (∂t/∂x)2 + (∂t/∂y)2 + (∂t/∂z)2 = 1/ F2(x, y, z)

Expanding the wave:

candidate selection

Expanding the wave:

candidate inclusion



FMM-SART: Forward Projection

frozen grid point            narrow-band grid point

Eikonal equation : (∂t/∂x)2 + (∂t/∂y)2 + (∂t/∂z)2 = 1/ F2(x, y, z)

HAFFM:  ∂t/∂x  = (3t(x, y, z) - 4t (x-1, y, z) + t (x-2, y, z))/2 

Expanding the wave:

candidate selection

Expanding the wave:

candidate inclusion

Comparison With Physics Wave Solver

Nearly perfect correlation (F=99%) for TOF simulations
• 95% for attenuation simulations

y = 0.1169x - 3.0696

R2 = 0.9997
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PDE Solver

FMM-SART: Back-Projection

frozen grid point            narrow-band grid point

Eikonal equation : (∂t/∂x)2 + (∂t/∂y)2 + (∂t/∂z)2 = 1/ F2(x, y, z)

HAFFM:  ∂t/∂x  = (3t(x, y, z) - 4t (x-1, y, z) + t (x-2, y, z))/2 

Expanding the wave:

candidate selection

Expanding the wave:

candidate inclusion

Accurate ray-tracing from 

source to sensors

FMM-SART: Complete Algorithm

Compute the ray length L

Compute Correction (TOV = Time Of Flight)
∆∆∆∆TOF = (TOF simulated – TOF collected) / L

Back project along the ray direction

SV = d / t
Sound Velocity (SV)

reconstruction

Begin next iteration with

near-orthogonal view

Track wave front forward

Process all detector rays



Results: Simple Phantom

Original Straight rays

Sound Speed

FMM HAFMM

Results: Simple Phantom

Original Straight rays

Sound Speed

Attenuation

FMM HAFMM

Original HAFMM

Novel Breast Phantom

Constructed from NIH Visible Woman

A cryosection RGB 

slice

H value transformed 

to grey-scale

mapping to 

acoustic speed

Reconstructed Phantom With 3 Lesions

280 transducers
• realistic tissue properties (sound speed, attenuation)
• lesions 6-9 pixels large with densities from 100 to 250

original reconstructed



Study: Lesion Size

280 transducers
• realistic tissue properties (sound speed, attenuation)
• lesions as small as 2 pixels radius

original reconstructed

Study: Lesion Shape

280 transducers
• realistic tissue properties (sound speed, attenuation)
• lesion shape: spiculated, lobulated, obscured

original reconstructed

Study: Noise

280 transducers
• realistic tissue properties (sound speed, attenuation)
• noise levels: SNR = 5 and 10

SNR=5 SNR=10

Time Performance

Accelerated a variant of FMM (the FIM) on commodity 
graphics hardware (GPU)
• achieved an 80-fold speedup over CPU implementation
• clinical reconstruction time (5 min) for realistic dataset



Conclusions and Future Work

Devised a high-accuracy transmission ultrasound 
framework for breast cancer screening
• clinical reconstruction speed achieved by GPU acceleration
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Conclusions and Future Work

Devised a high-accuracy transmission ultrasound 
framework for breast cancer screening
• clinical reconstruction speed achieved by GPU acceleration

Majority of work focused on simulated data
• simulations were obtained using a physics-based solver

Preliminary studies have been undertaken using acquired 
ultrasound data
• more focused efforts underway  

Questions?
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