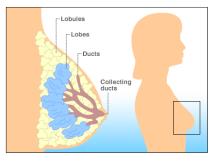
Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging

Shengying Li and Klaus Mueller

Computer Science Visual Analytics and Imaging (VAI) Lab Stony Brook University

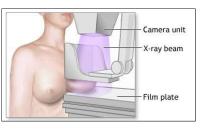
Joint Research With...



Motivation

Breast cancer is the dominant cancer in women

- in 2007 1.2 million women world-wide had breast cancer
- 30% mortality (465,000)

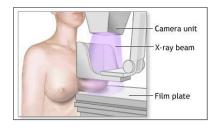


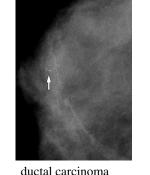
- cancer most common in the ducts (ductal carcinoma)
- cancer also frequent in the lobes or lobules (lobular carcinoma)
- cancer least frequent in the nipple, lymphatic vessels or skin

Early Detection: X-Ray Mammography

Most dominant screening method

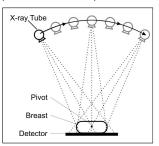
projection of a spread-out breast

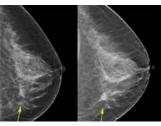

ductal carcinoma


Early Detection: X-Ray Mammography

Most dominant screening method

projection of a spread-out breast


Shortcomings:

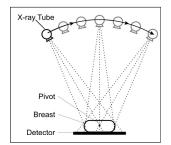

- radiation 2-4 times annual natural background radiation
- high false positive rate \rightarrow 80% biopsies found benign
- breast compression very inconvenient
- post-compression lesions difficult too localize

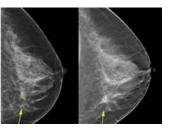
Early Detection: 3D X-Ray

Tomosynthesis and 3D cone-beam CT

• both provide a slice-per-slice view

mammo tomo


- much better resolve of small features
- eliminate shortcomings of compression


Early Detection: 3D X-Ray

Tomosynthesis and 3D cone-beam CT

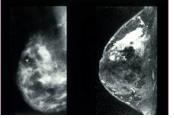
both provide a slice-per-slice view

tomo

mammo

- much better resolve of small features
- eliminate shortcomings of compression

Shortcomings:


radiation dose still remains

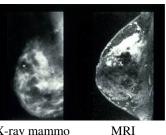
Early Detection: MRI

Most "luxurious" imaging method

• no compression, no radiation

X-ray mammo MRI

- able to detect tumors in even dense breasts (young women)
- able to detect early-stage tumors
 - ightarrow advisable for women at high risk for breast cancer


Early Detection: MRI

Most "luxurious" imaging method

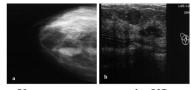
no compression, no radiation

X-ray mammo

- able to detect tumors in even dense breasts (young women)
- able to detect early-stage tumors \rightarrow advisable for women at high risk for breast cancer

Shortcomings:

high cost (\$1,000 vs. \$100)


Early Detection: Ultrasound (Echo)

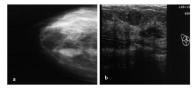
Promising at first glance:

- no radiation, painless, inexpensive
- in fact, echo (reflective) US routinely used as adjunct modality

echo US X-ray mammo

Shortcomings:

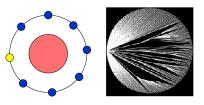
- relatively poor quality
- cannot differentiate malignant from benign masses \rightarrow false positive rate will not improve


Early Detection: Ultrasound (Echo)

Promising at first glance:

- no radiation, painless, inexpensive
- in fact, echo (reflective) US routinely used as adjunct modality

X-ray mammo

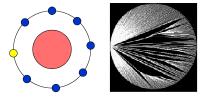

echo US

Ultrasound: Can We Do Better?

Use transmission ultrasound

- insert breast in water bath
- arrange piezo transducers as a ring around the breast
- one piezo fires and the others listen and record

Record at each sensor:

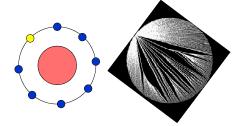

- Time Of Flight (TOF): time of first detected peak
- attenuation: amplitude of first detected peak

Ultrasound: Can We Do Better?

Use transmission ultrasound computed tomography (CT)

- insert breast in water bath
- arrange piezo transducers as a ring around the breast
- each piezo fires in turn while the others listen and record

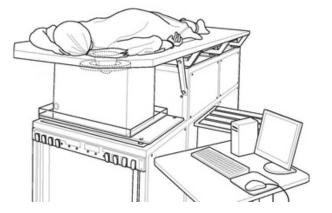
Record at each sensor:


- Time Of Flight (TOF): time of first detected peak
- attenuation: amplitude of first detected peak

Ultrasound: Can We Do Better?

Use transmission ultrasound computed tomography (CT)

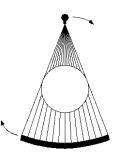
- insert breast in water bath
- arrange piezo transducers as a ring around the breast
- each piezo fires in turn while the others listen and record



Record at each sensor:

- Time Of Flight (TOF): time of first detected peak
- attenuation: amplitude of first detected peak

Possible Setup

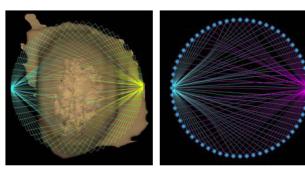


CT Reconstruction: A Primer

A quick primer:

- reconstruction is via back-projection
- linear rays are typically assumed
- well developed for X-ray data

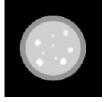
acquisition: rotating fan beam source

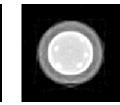

reconstruction: back-projection of all data

Ultrasound CT: Important Distinctions

In contrast to X-ray CT

• rays are NOT straight


refraction effects cannot be ignored


The Importance of Refraction

Reconstruction with and without considering refraction effects

- phantom experiment (simulated data)
- TOF reconstruction

original

without refraction with refraction

- the breast is a heterogeneous medium
 - \rightarrow proper refraction modeling is important for high fidelity
- this has been known for a long time

Energy Propagation Modeling

Ideally one should solve the acoustic wave equation

Obstacles:

- wave solvers are impractical for clinical routine
 → must obtain a reconstruction in 5 minutes tops
- existing methods for refraction modeling are awkward
- noisy ultrasound data require iterative reconstruction schemes
 → cannot afford costly energy propagation schemes

Energy Propagation Modeling

Ideally one should solve the acoustic wave equation

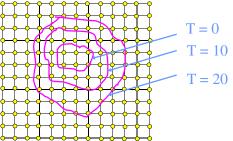
Obstacles:

- wave solvers are impractical for clinical routine
 → must obtain a reconstruction in 5 minutes tops
- existing methods for refraction modeling are awkward
- noisy ultrasound data require iterative reconstruction schemes
 → cannot afford costly energy propagation schemes

Our key observations

- sensors look for TOF → the front of the acoustic wave
 → wave front tracking approach seems appropriate
- require an efficient wave tracking procedure
 → further accelerate on GPUs

Wave Front Tracking



Propose the use of the Fast Marching Method (FMM)

- well known in computer vision
- also often used for distance transforms

FMM tracks the evolution of the frontier interface

Step 1: move front under velocity V of grid points on frontier Step 2: record frontier arrival time at each grid point as time field Repeat

Iterative CT Reconstruction: A Primer

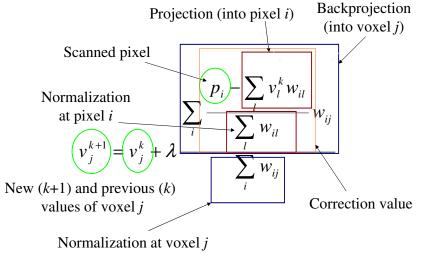
Predictor - Corrector scheme

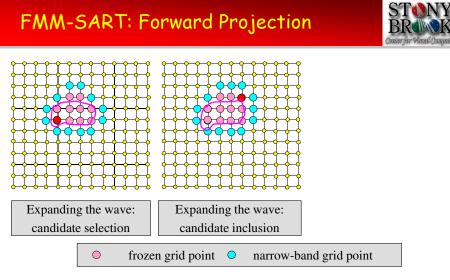
Start off with an initial estimate of the object

Simulate projections using this estimated object

important: simulator should be physically accurate
 → forward projection step

Compute the difference b/w simulated and collected data


Update estimated object by this difference (error)


spread the corrections across the grid
 → back-projection step

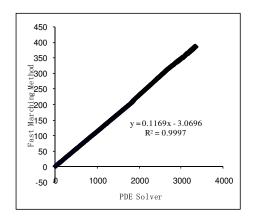
Iterate as long as corrections are significant

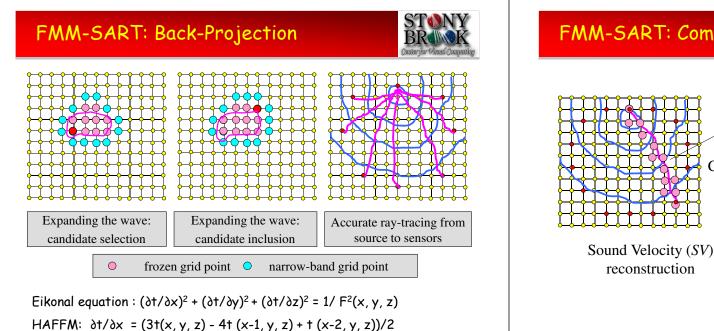
More Specifically: SART/SIRT

Eikonal equation : $(\partial t/\partial x)^2 + (\partial t/\partial y)^2 + (\partial t/\partial z)^2 = 1/F^2(x, y, z)$

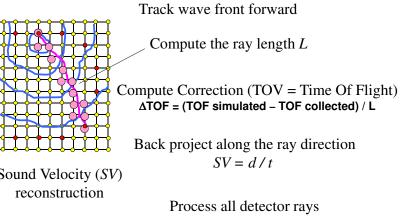
FMM-SART: Forward Projection

Expanding the wave: candidate selection	Expanding the wave: candidate inclusion

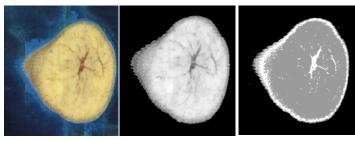

Eikonal equation : $(\partial t/\partial x)^2 + (\partial t/\partial y)^2 + (\partial t/\partial z)^2 = 1/F^2(x, y, z)$ HAFFM: $\partial t / \partial x = (3t(x, y, z) - 4t (x-1, y, z) + t (x-2, y, z))/2$


Comparison With Physics Wave Solver

Nearly perfect correlation (F=99%) for TOF simulations


95% for attenuation simulations

FMM-SART: Complete Algorithm


Begin next iteration with near-orthogonal view

Results: Simple Phantom Results: Simple Phantom Sound Speed Sound Speed Original Original FMM FMM Straight rays HAFMM Straight rays HAFMM Attenuation Original HAFMM

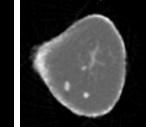
Novel Breast Phantom

Constructed from NIH Visible Woman

A cryosection RGB *H* value transformed slice

to grey-scale


mapping to acoustic speed

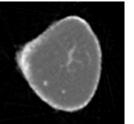

Reconstructed Phantom With 3 Lesions

280 transducers

- realistic tissue properties (sound speed, attenuation)
- lesions 6-9 pixels large with densities from 100 to 250

original

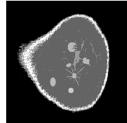

reconstructed

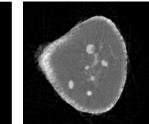

Study: Lesion Size

280 transducers

- realistic tissue properties (sound speed, attenuation)
- lesions as small as 2 pixels radius

original

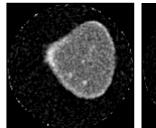

reconstructed

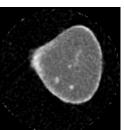

Study: Lesion Shape

280 transducers

- realistic tissue properties (sound speed, attenuation)
- lesion shape: spiculated, lobulated, obscured

original


reconstructed


Study: Noise

280 transducers

- realistic tissue properties (sound speed, attenuation)
- noise levels: SNR = 5 and 10

SNR=5

SNR=10

Time Performance

Accelerated a variant of FMM (the FIM) on commodity graphics hardware (GPU)

- achieved an 80-fold speedup over CPU implementation
- clinical reconstruction time (5 min) for realistic dataset

		FMM	FSM		FIM		
Task	Grid size	CPU	CPU	Cluster-	CPU	GPU (NVIDIA)	
				8 nodes		8086GTX	Tesla
Projection	128 ²	0.025	0.031	0.007	0.038	0.00082	0.00072
Projection	256 ²	0.097	0.180	0.039	0.189	0.0023	0.0022
Reconstr.	$128^2 \times 40$	2400	2649	506	3316	37.8	30.9
Reconstr.	256 ² ×44	19200	32732	6393	37221	286.2	225.76

Devised a high-accuracy transmission ultrasound framework for breast cancer screening

• clinical reconstruction speed achieved by GPU acceleration

Conclusions and Future Work

Devised a high-accuracy transmission ultrasound framework for breast cancer screening

• clinical reconstruction speed achieved by GPU acceleration

Majority of work focused on simulated data

• simulations were obtained using a physics-based solver

Conclusions and Future Work

Devised a high-accuracy transmission ultrasound framework for breast cancer screening

- clinical reconstruction speed achieved by GPU acceleration
- Majority of work focused on simulated data
 - simulations were obtained using a physics-based solver
- Preliminary studies have been undertaken using acquired ultrasound data
 - more focused efforts underway

Questions?

Funding provided by NIH, NSF