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Figure 1:  Some images obtained with volume rendering. From left to right: engine block (acquired via industrial CT), human knee, human
head, human skeleton (all acquired via medical CT).
1  INTRODUCTION
Volume visualization is a method of extracting meaningful

information from volumetric data using interactive graphics and
imaging. It is concerned with volume data representation, model-
ing, manipulation, and rendering [36][137][138][227]. Volume
data are 3D (possibly time-varying) entities that may have infor-
mation inside them, might not consist of tangible surfaces and
edges, or might be too voluminous to be represented geometrically.
They are obtained by sampling, simulation, or modeling tech-
niques. For example, a sequence of 2D slices obtained from Mag-
netic Resonance Imaging (MRI), Computed Tomography (CT),
functional MRI (fMRI), or Positron Emission Tomography (PET),
is 3D reconstructed into a volume model and visualized for diag-
nostic purposes or for planning of treatment or surgery. The same
technology is often used with industrial CT for non-destructive
inspection of composite materials or mechanical parts. Similarly,
confocal microscopes produce data which is visualized to study the
morphology of biological structures. In many computational fields,
such as in computational fluid dynamics, the results of simulations
typically running on a supercomputer are often visualized as vol-
ume data for analysis and verification. Recently, the sub-area of
volume graphics [144] has been expanding, and many traditional
geometric computer graphics applications, such as CAD and flight
simulation, have been exploiting the advantages of volume tech-
niques. 

Over the years many techniques have been developed to ren-
der volumetric data. Since methods for displaying geometric prim-
itives were already well-established, most of the early methods
involve approximating a surface contained within the data using
geometric primitives. When volumetric data are visualized using a
surface rendering technique, a dimension of information is essen-
tially lost. In response to this, volume rendering techniques were
developed that attempt to capture the entire 3D data in a single 2D
image. Volume rendering convey more information than surface
rendering images, but at the cost of increased algorithm complex-
ity, and consequently increased rendering times. To improve inter-
activity in volume rendering, many optimization methods both for
software and for graphics accelerator implementations, as well as
several special-purpose volume rendering machines, have been
developed.

2  VOLUMETRIC DATA
A volumetric data set is typically a set V of samples (x,y,z,v),

also called voxels, representing the value v of some property of the
data, at a 3D location (x,y,z). If the value is simply a 0 or an integer
i within a set I, with a value of 0 indicating background and the
value of i indicating the presence of an object Oi, then the data is
referred to as binary data. The data may instead be multi-valued,
with the value representing some measurable property of the data,
including, for example, color, density, heat or pressure. The value v
may even be a vector, representing, for example, velocity at each
location, results from multiple scanning modalities, such as ana-
tomical (CT, MRI) and functional imaging (PET, fMRI), or color
(RGB) triples, such as the Visible Human cryosection dataset
[122]. Finally, the volume data may be time-varying, in which case
V becomes a 4D set of samples (x,y,z,t,v).

In general, the samples may be taken at purely random loca-
tions in space, but in most cases the set V is isotropic containing
samples taken at regularly spaced intervals along three orthogonal
axes. When the spacing between samples along each axis is a con-
stant, but there may be three different spacing constants for the
three axes the set V is anisotropic. Since the set of samples is
defined on a regular grid, a 3D array (also called the volume buffer,
3D raster, or simply the volume) is typically used to store the val-
ues, with the element location indicating position of the sample on
the grid. For this reason, the set V will be referred to as the array of
values V(x, y, z), which is defined only at grid locations. Alterna-
tively, either rectilinear, curvilinear (structured), or unstructured
grids, are employed (e.g., [306]). In a rectilinear grid the cells are
axis-aligned, but grid spacings along the axes are arbitrary. When
such a grid has been non-linearly transformed while preserving the
grid topology, the grid becomes curvilinear. Usually, the rectilinear
grid defining the logical organization is called computational
space, and the curvilinear grid is called physical space. Otherwise
the grid is called unstructured or irregular. An unstructured or
irregular volume data is a collection of cells whose connectivity
has to be specified explicitly. These cells can be of an arbitrary
shape such as tetrahedra, hexahedra, or prisms.

3  RENDERING VIA GEOMETRIC PRIMITIVES
To reduce the complexity of the volume rendering task, sev-

eral techniques have been developed which approximate a surface
contained within the volumetric data by ways of geometric primi-
tives, most commonly triangles, which can then be rendered using
conventional graphics accelerator hardware. A surface can be
defined by applying a binary segmentation function B(v) to the vol-
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umetric data, where B(v) evaluates to 1 if the value v is considered
part of the object, and evaluates to 0 if the value v is part of the
background. The surface is then contained in the region where B(v)
changes from 0 to 1. 

Most commonly, B(v) is either a step function
 (where viso is called the iso-value), or an

interval [v1,v2] in which  (where [v1,v2] is
called the iso-interval). For the former, the resulting surface is
called the iso-surface, while for the latter the resulting structure is
called the iso-contour. Several methods for extracting and render-
ing iso-surfaces have been developed, a few are briefly described
here. The Marching Cubes algorithm [185] was developed to
approximate an iso-valued surface with a triangle mesh. The algo-
rithm breaks down the ways in which a surface can pass through a
grid cell into 256 cases, based on the B(v) membership of the 8
voxels that form the cell’s vertices. By ways of symmetry, the 256
cases reduce to 15 base topologies, although some of these have
duals, and a technique called Asymptotic Decider [239] can be
applied to select the correct dual case and thus prevent the inci-
dence of holes in the triangle mesh. For each of the 15 cases (and
their duals), a generic set of triangles representing the surface is
stored in a look-up table. Each cell through which a surface passes
maps to one of the base cases, with the actual triangle vertex loca-
tions being determined using linear interpolation of the cell verti-
ces on the cell edges (see Fig. 1). A normal value is estimated for
each triangle vertex, and standard graphics hardware can be uti-
lized to project the triangles, resulting in a relatively smooth
shaded image of the iso-valued surface. 

When rendering a sufficiently large data set with the March-
ing Cubes algorithm, with an average of 3 triangles per cell, mil-
lions of triangles may be generated, and this can impede interactive
rendering of the generated polygon mesh. To reduce the number of
triangles, one may either post-process the mesh by applying one of
the many mesh decimation methods (see e.g., [90][119][282]), or
produce a reduced set of primitives in the mesh generation process,
via a feature-sensitive octree method [287] or discretized Marching
Cubes [220]. The fact that during viewing many of the primitives
may map to a single pixel on the image plane led to the develop-
ment of screen-adaptive surface rendering algorithms that use 3D
points as the geometric primitive. One such algorithm is Dividing
Cubes [42], which subdivides each cell through which a surface
passes into subcells. The number of divisions is selected such that
the subcells project onto a single pixel on the image plane. Another
algorithm which uses 3D points as the geometric primitive is the
Trimmed Voxel Lists method [301]. Instead of subdividing, this
method uses one 3D point (with normal) per visible surface cell,
projecting that cell on up to three pixels of the image plane to
insure coverage in the image. 

The traditional Marching Cubes algorithms simply marches

across the grid and inspects every cell for a possible iso-surface.
This can be wasteful when users want to interactively change the
iso-value viso and -surface to explore the different surfaces embed-
ded in the data. By realizing that an iso-surface can only pass
through a cell if at least one voxel has a value above or equal viso
and at least one voxel has a value below or equal viso, one can
devise data structures that only inspect cells where this criterion is
fulfilled. Examples are the NOISE algorithm [184] that uses a K-D
tree embedded into span-space for quickly identifying the candi-
date cells (this method was later improved by [41] who used an
interval tree), as well as the ISSUE algorithm [288]. Finally, since
often triangles are generated that are later occluded during the ren-
dering process, it is advisable to visit the cells in front-to-back
order and only extract and render triangles that fall outside previ-
ously occluded areas [89].

4  DIRECT VOLUME RENDERING: PRELUDE
Representing a surface contained within a volumetric data set

using geometric primitives can be useful in many applications,
however, there are several main drawbacks to this approach. First,
geometric primitives can only approximate surfaces contained
within the original data. Adequate approximations may require an
excessive amount of geometric primitives. Therefore, a trade-off
must be made between accuracy and space requirements. Second,
since only a surface representation is used, much of the informa-
tion contained within the data is lost during the rendering process.
For example, in CT scanned data useful information is contained
not only on the surfaces, but within the data as well. Also, amor-
phous phenomena, such as clouds, fog, and fire cannot be ade-
quately represented using surfaces, and therefore must have a
volumetric representation, and must be displayed using volume
rendering techniques.

However, before moving to techniques that visualize the data
directly, without going through an intermediate surface extraction
step, we first discuss in the next section some of the general princi-
ples that govern the theory of discretized functions and signals,
such as the discrete volume data. We also present some specialized
theoretical concepts, more relevant in the context of volume visual-
ization.

5  VOLUMETRIC FUNCTION INTERPOLATION 
The volume grid V only defines the value of some measured

property f(x,y,z) at discrete locations in space. If one requires the
value of f(x,y,z) at an off-grid location (x,y,z), a process called
interpolation must be employed to estimate the unknown value
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Figure 1:  A grid cell with voxel values as indicated, intersected
by an iso-surface (iso-value=125). This is base case #1 of the
Marching Cubes algorithm: a single triangle separating surface
interior (black vertex) from exterior (white vertices). The posi-
tions of the triangle vertices are estimated by linear interpolation
along the cell edges.
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Figure 2:  Each grid cell is characterized by its lowest (vmin) and
its highest (vmax) voxel value, and represented by a point in span
space. Given an iso-value viso, only cells that satisfy both

 and  contain the iso-surface and are
quickly extracted from a K-D tree [184] or interval-tree [41]
embedding of the span-space points.
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from the known grid samples V(x,y,z). There are many possible
interpolation functions (also called filters or filter kernels). The
simplest interpolation function is known as zero-order interpola-
tion, which is actually just a nearest-neighbor function. i.e., the
value at any location (x,y,z) is simply that of the grid sample closest
to that location:

(1)

which gives rise to a box filter (black curve in Fig. 4). With this
interpolation method there is a region of constant value around
each sample in V. The human eye is very sensitive to the jagged
edges and unpleasant staircasing that result from a zero-order inter-
polation, and therefore this kind of interpolation gives generally
the poorest visual results (see Fig. 3a).            

Linear or first-order interpolation (magenta curve in Fig. 4) is
the next-best choice, and its 2D and 3D versions are called bi-lin-
ear and tri-linear interpolation, respectively. It can be written in 3D
as 3 stages of 7 linear interpolations, since the filter function is sep-
arable in higher dimensions. The first 4 linear interpolations are
along x:

(2)

Using these results, 2 linear interpolations along y follow:

(3)

One final interpolation along z yields the interpolation result: 

(4)

Here the u,v,w are the distances (assuming a cell of size 13, without
loss of generality) of the sample at (x,y,z) from the lower, left, rear
voxel in the cell containing the sample point (e.g., the voxel with
value 50 in Fig. 1). A function interpolated with a linear filter no
longer suffers from staircase artifacts (see Fig. 3b). However, it has
discontinuous derivatives at cell boundaries, which can lead to
noticeable banding when the visual quantities change rapidly from
one cell to the next.

A second-order interpolation filter that yields a f(x,y,z) with a
continuous first derivative is the cardinal spline function, whose
1D function is given by (see blue curve in Fig. 4):

(5)

Here, u measures the distance of the sample location to the grid
points that fall within the extent of the kernel, and a=-0.5 yields the
Catmull-Rom spline which interpolates a discrete function with the
lowest third-order error [149]. The 3D version of this filter h(u,v,w)

is separable, i.e., h(u,v,w)=h(u)h(v)h(w), and therefore interpola-
tion in 3D can be written as a 3-stage nested loop. 

A more general form of the cubic function has two parameters
and the interpolation results obtained with different settings of
these parameters has been investigated by Mitchell and Netravali
[214]. In fact, the choice of filters and their parameters always pre-
sents trade-offs between the sensitivity to noise, sampling fre-
quency ripple, aliasing (see below), ringing, and blurring, and there
is no optimal setting that works for all applications. Marschner and
Lobb [200] extended the filter discussion to volume rendering and
created a challenging volumetric test function with a uniform fre-
quency spectrum that can be employed to visually observe the
characteristics of different filters (see Fig. 5). Finally, Möller et al.
[217] applied a Taylor series expansion to devise a set of optimal
n-th order filters that minimize the (n+1)-th order error.       

Generally, higher filter quality comes at the price of wider
spatial extent (compare Fig. 4) and therefore larger computational
effort. The best filter possible in the numerical sense is the sinc fil-
ter, but it has infinite spatial extent and also has noticeable ringing
[214]. Sinc filters make excellent, albeit expensive, interpolation
filters when used in truncated form and multiplied by a window
function [200][322], possibly adaptive to local detail [197]. In
practice, first-order or linear filters give satisfactory results for
most applications, providing good cost-quality trade-offs, but cubic
filters are also used. Zero-order filters give acceptable results when
the discrete function has already been sampled at a very high rate,
for example in high-definition function lookup tables [349]. 

All filters presented thus far are grid-interpolating filters, i.e.,
their interpolation yields f(x,y,z) = V(x,y,z) at grid points [324].
When presented with a uniform grid signal they also interpolate a
uniform f(x,y,z) everywhere. This is not the case with a Gaussian
filter function (red curve in Fig. 4) which can be written as:

(6)

Here, a determines the width of the filter and b is a scale factor.

f x y z ), ,( ) V round x( ) round y( ) round z( ),,( )=

Figure 3:  Magnification via interpolation with (a) a box filter;
and (b) a bi-linear filter. The latter gives a much more pleasing
result.
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Figure 4:  Popular filters in the spatial domain: box (black), lin-
ear (magenta), cubic (blue), Gaussian (red)

Figure 5:  Marschner-Lobb test function, sampled into a 203

grid: (a) the whole function, (b) close-up, reconstructed and ren-
dered with a cubic filter.
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The Gaussian has infinite continuity in the interpolated function’s
derivative, but it introduces a slight ripple (about 0.1%) into an
interpolated uniform function. The Gaussian is most popular when
a radially symmetric interpolation kernel is needed [347][235] and
for grids that assume that the frequency spectrum of f(x,y,z) is radi-
ally bandlimited [323][234].

It should be noted that interpolation cannot restore sharp
edges that may have existed in the original function forg(x,y,z) prior
to sampling into the grid. Filtering will always smooth or lowpass
the original function somewhat. Non-linear filter kernels [124] or
transformations of the interpolated results [231] are needed to rec-
reate sharp edges, as we shall see later. 

A frequent artifact that can occur is aliasing. It results from
inadequate sampling and gives rise to strange patterns that did not
exist in the sampled signal. Proper pre-filtering (bandlimiting) has
to be performed whenever a signal is sampled below its Nyquist
limit, i.e., twice the maximum frequency that occurs in the signal.
Filtering after aliasing will not undo these adverse effects. Fig. 6
illustrates this by ways of an example, and the interested reader
may consult standard texts, such as [361] and [75], for more detail. 

The gradient of f(x,y,z) is also of great interest in volume visu-
alization, mostly for the purpose of estimating the amount of light
reflected from volumetric surfaces towards the eye (for example,
strong gradients indicate stronger surfaces and therefore stronger
reflections). There are three popular methods to estimate a gradient
from the volume data [216]. The first computes the gradient vector
at each grid point via a process called central differencing: 

(7)

and then interpolates the gradient vectors at a (x,y,z) using any of
the filters described above. The second method also uses central
differencing, but it does it at (x,y,z) by interpolating the required
support samples on the fly. The third method is the most direct and

employs a gradient filter [12] in each of the three axis directions to
estimate the gradients. These three gradient filters could be simply
the (u,v,w) partial derivatives of the filters described above or they
could be a set of optimized filters [216]. The third method gives the
best results since it only performs one interpolation step, while the
other two methods have lower complexity and often have practical
application-specific advantages. An important observation is that
gradients are much more sensitive to the quality of the interpola-
tion filter since they are used in illumination calculations, which
consist of higher-order functions that involve the normal vectors,
which in turn are calculated from the gradients via normalization
[217].

6  VOLUME RENDERING TECHNIQUES
In the next subsections various fundamental volume rendering

techniques are explored. Volume rendering or direct volume ren-
dering is the process of creating a 2D image directly from 3D volu-
metric data, hence it is often called direct volume rendering.
Although several of the methods described in these subsections
render surfaces contained within volumetric data, these methods
operate on the actual data samples, without generating the interme-
diate geometric primitive representations used by the algorithms in
the previous section.

Volume rendering can be achieved using an object-order, an
image-order, or a domain-based technique. Hybrid techniques
have also been proposed. Object-order volume rendering tech-
niques use a forward mapping scheme where the volume data is
mapped onto the image plane. In image-order algorithms, a back-
ward mapping scheme is used where rays are cast from each pixel
in the image plane through the volume data to determine the final
pixel value. In a domain-based technique the spatial volume data is
first transformed into an alternative domain, such as compression,
frequency, or wavelet, and then a projection is generated directly
from that domain. 

6.1  Image-Order Techniques
There are four basic volume rendering modes: X-ray render-

ing, Maximum Intensity Projection (MIP), iso-surface rendering
and full volume rendering, where the third mode is just a special
case of the fourth. These four modes share two common opera-
tions: (i) They all cast rays from the image pixels, sampling the
grid at discrete locations along their paths, and (ii) they all obtain
the samples via interpolation, using the methods described earlier.
The modes differ, however, in how the samples taken along a ray
are combined. In X-ray, the interpolated samples are simply
summed, giving rise to a typical image obtained in projective diag-
nostic imaging (Fig. 7a), while in MIP only the interpolated sample
with the largest value is written to the pixel (Fig. 7b). In full vol-
ume rendering (Fig. 7c and Fig. 7d), on the other hand, the interpo-
lated samples are further processed to simulate the light transport
within a volumetric medium according to one of many possible
models. In the remainder of this section, we shall concentrate on
the full volume rendering mode since it provides the greatest
degree of freedom, although rendering algorithms have been pro-
posed that merge the different modes into a hybrid image genera-
tion model [110]. 

The fundamental element in full volume rendering is the vol-
ume rendering integral. In this section we shall assume the low-
albedo scenario, in which a certain light ray only scatters once
before leaving the volume. The low-albedo optical model was first
described by [15] and [134], and then formally derived by [201]. It
computes, for each cast ray, the quantity Iλ(x,r), which is the
amount of light of wavelength λ coming from ray direction r that is
received at point x on the image plane:

(a)

(b) (c)

(d)

(e)

Figure 6:  Anti-aliasing: (a) original image; (b) reduction by sim-
ple subsampling - disturbing patterns emerge, caused by aliasing
the higher frequency content; (c) blurring of (b) does not elimi-
nate patterns; (d) pre-filtering (blurring) of the original image
reduces its high frequency content; (e) subsampling of (d) does
not cause aliasing due to the prior bandlimiting operation. 
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(8)

Here L is the length of ray r. We can think of the volume as being
composed of particles with certain mass density values µ (some-
times called light extinction values [201]). These values, as well as
the other quantities in this integral, are derived from the interpo-
lated volume densities f(x,y,z) via some mapping function. The par-
ticles can contribute light to the ray in three different ways: via
emission [276], transmission, and reflection [328], thus
Cλ(s)=Eλ(s)+Tλ(s)+Rλ(s). The latter two terms, Tλ and Rλ, trans-
form light received from surrounding light sources, while the
former, Eλ, is due to the light-generating capacity of the particle.
The reflection term takes into account the specular and diffuse
material properties of the particles. To account for the higher
reflectivity of particles with larger mass densities, one must weight
Cλ by µ. In low-albedo, we only track the light that is received on
the image plane. Thus, in (8), Cλ is the portion of the light of wave-
length λ available at location s that is transported in the direction of
r. This light then gets attenuated by the mass densities of the parti-
cles along r, according to the exponential attenuation function. 

Rλ(s) is computed via the standard illumination equation [75]:

(9)

where we have dropped the subscript λ for reasons of brevity.
Here, Ca is the ambient color, ka is the ambient material coeffi-
cient, Cl is the color of the light source, Co is the color of the object
(determined by the density-color mapping function), kd is the dif-
fuse material coefficient, N is the normal vector (determined by the
gradient), L is the light direction vector, ks is the specular material
coefficient, H is the halfvector, and ns is the Phong exponent.  

Equation (8) only models the attenuation of light from s to the
eye (blue ray in Fig. 8). But the light received at s is also attenuated
by the volume densities on its path from the light source to s (red
ray in Fig. 8). This gives rise to the following term for Cl in (9),
which is now dependent on the location s:   

  (10)

Here, CL is the color of the lightsource and T is the distance from s
to the light source (see Fig. 8). The inclusion of this term into (9)
produces volumetric shadows, which give greater realism to the

image [246][372] (see Fig. 9). In practice, applications that com-
pute volumetric shadows are less common, due to the added com-
putational complexity, but an interactive hardware-based approach
has been recently proposed [156][157]. 

The analytic volume rendering integral cannot, in the general
case, be computed efficiently, if at all, and therefore a variety of
approximations are in use. An approximation of (8) can be formu-
lated using a discrete Riemann sum, where the rays interpolate a
set of samples, most commonly spaced apart by a distance ∆s:

(11)

A few more approximations make the computation of this
equation more efficient. First, the transparency t(i∆s) is defined as

. Transparency assumes values in the range [0.0,
1.0]. The opacity  is the inverse of the
transparency. Further, the exponential term in (11) can be approxi-
mated by the first two terms of its Taylor series expansion:

. Then, one can write:
. This transforms (11) into the

well-known compositing equation:

(12)

This is a recursive equation in (1-α) and gives rise to the recursive
front-to-back compositing formula [174][266]:

(13)

Thus, a practical implementation of volumetric ray would traverse
the volume from front to back, calculating colors and opacities at
each sampling site, weighting these colors and opacities by the cur-
rent accumulated transparency (1-α), and adding these terms to the
accumulated color and transparency to form the terms for the next
sample along the ray. An attractive property of the front-to-back

Figure 7:  CT head rendered in the four main volume rendering
modes: (a) X-ray; (b) MIP; (c) Iso-surface; (d) Translucent.
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Figure 8:  Transport of light to the eye.
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Figure 9:  CT lobster rendered without shadows (left) and with
shadows (right). The shadows on the wall behind the lobster as
well as the self-shadowing of the legs creates greater realism.
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traversal is that a ray can be stopped once α approaches 1.0, which
means that light originating from structures further back is com-
pletely blocked by the cumulative opaque material in front. This
provides for accelerated rendering and is called early ray termina-
tion. An alternative form of (13) is the back-to-front compositing
equation:

(14)

Back-to-front compositing is a generalization of the Painter’s algo-
rithm and does not enjoy speed-up opportunities of early ray termi-
nation and is therefore less frequently used.

Equation (12) assumes that a ray interpolates a volume that
stores at each grid point a color vector (usually a (red, green, blue)
= RGB triple) as well as an α value [174][175]. There, the colors
are obtained by shading each grid point using (9). Before we
describe the alternative representation, let us first discuss how the
voxel densities are mapped to the colors Co in (9). 

The mapping is implemented as a set of mapping functions,
often implemented as 2D tables, called transfer functions. By ways
of the transfer functions, users can interactively change the proper-
ties of the volume dataset. Most applications give access to four
mapping functions: R(d), G(d), B(d), A(d), where d is the value of a
grid voxel, typically in the range of [0,255] for 8-bit volume data.
Thus, users can specify semi-transparent materials by mapping
their densities to opacities < 1.0, which allows rays to acquire a
mix of colors that is due to all traversed materials. More advanced
applications give users also access to transfer functions that map
ks(d), kd(d), ns(d), and others. Wittenbrink pointed out that the col-
ors and opacities at each voxel should be multiplied prior to inter-
polation to avoid artifacts on object boundaries [360]. 

The model in (12) is called the pre-classified model, since
voxel densities are mapped to colors and opacities prior to interpo-
lation. This model cannot resolve high frequency detail in the
transfer functions (see Fig. 10 for an example), and also typically
gives blurry images under magnification [231]. An alternative
model that is more often used is the post-classified model. Here,
the raw volume values are interpolated by the rays, and the interpo-
lation result is mapped to color and opacity:

(15)

The function value f(i∆s) and the gradient vector g(i∆s) are inter-
polated from fd(x,y,z) using a 3D interpolation kernel, and Cλ and α
are now the transfer and shading functions that translate the inter-
polated volume function values into color and opacity. This gener-
ates considerably sharper images (see Fig. 11). 

A quick transition from 0 to 1 at some density value di in the
opacity transfer function selects the iso-surface diso=di. Thus, iso-
surface rendering is merely a subset of full volume rendering,
where the ray hits a material with d=diso and then immediately
becomes opaque and terminates.

Post-classified rendering only eliminates some of the prob-
lems that come with busy transfer functions. Consider again
Fig. 10a, and now assume a very narrow peak in the transfer func-
tion at d12. With this kind of transfer function, a ray point-sampling
the volume at s may easily miss to interpolate d12, but may have
interpolated it, had it just sampled the volume at s+δs. Pre-inte-
grated transfer functions [70][271] solve this problem by pre-com-
puting a 2D table that stores the analytical volume rendering
integration for all possible density pairs (df,db). This table is then
indexed during rendering by each ray sample pair (db, df), interpo-
lated at sample locations ∆s apart (see Fig. 10b). The pre-integra-
tion assumes a piecewise linear function within the density pairs,
and thus guarantees that no transfer function detail falling between
two interpolated (df, db) fails to be considered in the discrete ray
integration.

6.2  Object-Order Techniques
Object-order techniques decompose the volume into a set of

basis elements or basis functions which are individually projected
to the screen and assemble into an image. If the volume rendering
mode is X-ray or MIP, then the basis functions can be projected in
any order, since in X-ray and MIP the volume rendering integral
degenerates to a commutative sum or MAX operation. In contrast,
depth ordering is required when solving for the generalized volume
rendering integral (8). Early work represented the voxels as dis-
joint cubes, which gave rise to the cuberille representation

c c 1 α i∆s( )–( ) C i∆s( )+=
α α 1 α i∆s( )–( ) α i∆s( )+=

density

color

d1 d2

Figure 10:  Transfer function aliasing. When the volume is ren-
dered pre-classified, then both the red (density d1) and the blue
(density d2) voxels receive a color of zero, according to the
transfer function shown on the left. At ray sampling this voxel
neighborhood at s would then interpolate a color of zero as well.
On the other hand, in post-classified rendering, the ray at s would
interpolate a density close to d12 (between d1 and d2) and
retrieve the strong color associated with d12 in the transfer func-
tion. 

sampling site s
d12

df
db

(a) (b)

Iλ x r,( ) =

Cλ f i∆s( ) g i∆s( ),( )α f i∆s( )( ) 1 α f j∆s( )( )–( )

j 0=

i 1–

∏
i 0=

L ∆s⁄ 1–

∑

Figure 11:  Pre-classified (left column) vs. post-classified ren-
dering (right column). The latter yields sharper images since the
opacity and color classification is performed after interpolation.
This eliminates the blurry edges introduced by the interpolation
filter. 
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[96][113][114]. Since a cube is equivalent to a nearest neighbor
kernel, the rendering results were inferior. Therefore, more recent
approaches have turned to kernels of higher quality.  

To better understand the issues associated with object-order
projection it helps to view the volume as a field of basis functions
h, with one such basis kernel located at each grid point where it is
modulated by the grid point’s value (see Fig. 12 where two such
kernels are shown). This ensemble of modulated basis functions
then makes up the continuous object representation, i.e., one could
interpolate a sample anywhere in the volume by simply adding up
the contributions of the modulated kernels that overlap at the loca-
tion of the sample value. Hence, one could still traverse this
ensemble with rays and render it in image-order. However, a more
efficient method emerges when realizing that the contribution of a
voxel j with value dj is given by , where s follows the
line of kernel integration along the ray. Further, if the basis kernel
is radially symmetric, then the integration  is independent
of the viewing direction. Therefore, one can perform a pre-integra-
tion of   and store the result into a lookup-table. This table
is called the kernel footprint, and the kernel projection process is
referred to as kernel splatting or simply, splatting. If the kernel is a
Gaussian, then the footprint is a Gaussian as well. Since the kernel
is identical for all voxels, we can use it for all voxels. We can gen-
erate an image by going through the list of object voxels in depth-
order and performing the following steps for each (see again
Fig. 12): (i) Calculate the screen-space coordinate of the projected
grid point; (ii) center the footprint around that point and stretch it
according to the image magnification factor; (iii) rasterize the foot-
print to the screen, using the pre-integrated footprint table and mul-
tiplying the indexed values by the voxel’s value [347][348][349].
This rasterization can either be performed via fast DDA procedures
[196][225], or in graphics hardware, by texture-mapping the foot-
print (basis image) onto a polygon [52]. 

 There are three types of splatting: composite-only, axis-
aligned sheet-buffered, and image-aligned sheet-buffered splatting.
The composite-only method was proposed first [348] and is the
most basic one (see Fig. 12). Here, the object points are traversed
in either front-to-back or back-to-front order. Each is first assigned
a color and opacity using the shading equation (9) and the transfer
functions. Then, each point is splatted into the screen’s color and
opacity buffers and the result is composited with the present image
(Equation (13)). In this approach, color bleeding and slight spar-
kling artifacts in animated viewing may be noticeable since the
interpolation and compositing operations cannot be separated due
to the pre-integration of the basis (interpolation) kernel [349].  

An attempt to solve this problem gave way to the axis-aligned
sheet-buffered splatting approach [347] (see Fig. 13a). Here, the
grid points are organized into sheets (basically the volume slices
most parallel to the image plane), assigned a color and opacity, and
splatted into the sheet’s color and opacity buffers. The important
difference is that now all splats within a sheet are added and not
composited, while only subsequent sheets are composited. This
prevents potential color bleeding of voxels located in consecutive
sheets, due to the more accurate reconstruction of the opacity layer.
The fact that the voxel sheets must be formed by the volume slices
most parallel to the viewing axis leads to a sudden switch of the

compositing order when the major viewing direction changes and
an orthogonal stack of volume slices must be used to organize the
voxels. This causes noticeable popping artifacts where some sur-
faces suddenly reflect less light and others more [224]. The solu-
tion to this problem is to align the compositing sheet with the
image plane at all times, which gives rise to the image-aligned
sheet-buffered splatting approach [224] (see Fig. 13b). Here, a slab
is advanced across the volume and all kernels that intersect the slab
are sliced and projected. Kernel slices can be pre-integrated into
footprints as well, and thus this sheet-buffered approach differs
from the original one in that each voxel has to be considered more
than once. The image-aligned splatting method provides the most
accurate reconstruction of the voxel field prior to compositing and
eliminates both color bleeding and popping artifacts. It is also best
suited for post-classified rendering since the density (and gradient)
field is reconstructed accurately in each sheet. However, it is more
expensive due to the multiple splatting of a voxel.    

The divergence of rays under perspective viewing causes
undersampling of the volume portions further away from the view-
point (see Fig. 14). This leads to aliasing in these areas. As was
demonstrated in Fig. 6, lowpassing can eliminate the artifacts
caused by aliasing and replace them by blur (see Fig. 15). For per-
spective rendering the amount of required lowpassing increases
with distance from the viewpoint. The kernel-based approaches
can achieve this progressive lowpassing by simply stretching the
footprints of the voxels as a function of depth, since stretched ker-
nels act as lowpass filters (see Fig. 14) [230][318]. EWA (Elliptical
Weighted Average) Splatting [375] provides a general framework
to define the screen-space shape of the footprints, and their map-
ping into a generic footprint, for generalized grids under perspec-
tive viewing. An equivalent approach for raycasting is to split the
rays in more distant volume slices to always maintain the proper
sampling rate [245]. Kreeger et al. [161] proposed an improvement
of this scheme that splits and merges rays in an optimal way.   

A major advantage of object-order methods is that only the

dj h s( ) sd∫⋅

h s( ) sd∫
h s( ) sd∫

composite
splat

screen

Figure 12:  Object-order volume rendering with kernel splatting
implemented as footprint mapping.

footprints

add 

composite

add 

composite

Figure 13:  Sheet-buffered splatting: (a) axis-aligned - the entire
kernel within the current sheet is added, (b) image-aligned - only
slices of the kernels intersected by the current sheet-slab are
added.

(a) (b)

Figure 14:  Stretching the basis functions in volume layers z>zk,
where the sampling rate of the ray grid is progressively less than
the volume resolution.

zk
7



points (or other basis primitives, such as tetrahedral or hexagonal
cells [352]) which make up the object must be stored. This can be
advantageous when the object has an intricate shape, with many
pockets of empty space [208]. While raycasting would spend much
effort traversing (and storing) the empty space, kernel-based or
point-based objects will not consider the empty space, neither dur-
ing rendering nor for storage. However, there are trade-offs, since
the rasterization of a footprint takes more time than the commonly
used trilinear interpolation of ray samples, since the radially sym-
metric kernels employed for splatting must be larger than the trilin-
ear kernels to ensure proper blending. Hence, objects with compact
structure are more favorably rendered with image-order methods
or hybrid methods (see next section). Another disadvantage of
object-order methods is that early ray termination is not available
to cull occluded material early from the rendering pipeline. The
object-order equivalent is early point elimination, which is more
difficult to achieve than early ray termination. Finally, image-order
methods allow the extension of raycasting to raytracing, where sec-
ondary and higher-order rays are spawned at reflection sites. This
facilitates mirroring on shiny surfaces, inter-reflections between
objects, and soft shadows. 

There are a number of ways to store and manage point-based
objects. These schemes are mainly distinguished by their ability to
exploit spatial coherence during rendering. The lack of spatial
coherence requires more depth sorting during rendering and also
means more storage for spatial parameters. The least spatial coher-
ence results from storing the points sorted by density [51]. This has
the advantage that irrelevant points, being assigned transparent val-
ues in the transfer functions, can be quickly culled from the render-
ing pipeline. However, it requires that (x,y,z) coordinates and,
possibly gradient vectors, are stored along with the points since
neighborhood relations are completely lost. It also requires that all
points be view-transformed first before they can be culled due to
occlusion or exclusion from the viewing pyramid. The method also
requires that the points be depth-sorted during rendering, or at
least, tossed into depth bins [228]. A compromise is struck by Ihm
and Lee [128] who sort points by density within volume slices
only, which gives implicit depth-ordering when used in conjunc-
tion with an axis-aligned sheet-buffer method. A number of
approaches exist that organize the points into RLE (Run Length
Encoded) lists, which allow the spatial coordinates to be incremen-
tally computed when traversing the runs [150][234]. However,
these approaches do not allow points to be easily culled based on
their density value. Finally, one may also decompose the volume
into a spatial octree and maintain a list of voxels in each node. This
provides depth sorting on the node-level. 

A number of surface-based splatting methods have also been
described. These do not provide the flexibility of volume explora-

tion via transfer functions, since the original volume is discarded
after the surface has been extracted. They only allow a fixed geo-
metric representation of the object that can be viewed at different
orientations and with different shadings. A popular method is
shell-rendering [329] which extracts from the volume (possibly
with a sophisticated segmentation algorithm) a certain thin or thick
surface or contour and represents it as a closed shell of points.
Shell-rendering is fast since the number of points is minimized and
its data structure used has high cache coherence. More advanced
point-based surface rendering methods are QSplat [275], Surfels
[260], and Surface Splats [374], which have been predominantly
developed for point-clouds obtained with range scanners, but can
also be used for surfaces extracted from volumes [375].  

6.3  Hybrid Techniques
Hybrid techniques seek to combine the advantages of the

image-order and object-order methods, i.e., they use object-cen-
tered storage for fast selection of relevant material (which is a hall-
mark of object-order methods) and they use early ray termination
for fast occlusion culling (which is a hallmark of image-order
methods). 

The shear-warp algorithm [165] is such a hybrid method. In
shear-warp, the volume is rendered by a simultaneous traversal of
RLE-encoded voxel and pixel runs, where opaque pixels and trans-
parent voxels are efficiently skipped during these traversals (see
Fig. 16a) [268]. Further speed comes from the fact that sampling
only occurs in the volume slices via bilinear interpolation, and that
the ray grid resolution matches that of the volume slices, and there-
fore the same bilinear weights can be used for all rays within a
slice (see Fig. 16b). The caveat is that the image must first be ren-
dered from a sheared volume onto a so-called base-plane, that is
aligned with the volume slice most parallel to the true image plane
(Fig. 16a). After completing the base-plane rendering, the base
plane image must be warped onto the true image plane and the
resulting image is displayed. All of this combined enables framer-
ates in excess of 10 frames/s on current PC processors, for a 1283

volume. There are a number of compromises that had to be made in
the process:
• Since the interpolation only occurs within one slice at a

time, more accurate tri-linear interpolation reduces to less
accurate bi-linear interpolation and the ray sampling dis-
tance varies between 1 and , depending on the view ori-
entation. This leads to aliasing and staircasing effects at
viewing angles near 45°.

• Since the volume is run-length one needs to use three sets
of voxel encodings (but it could be reduced to two [319]),
one for the each major viewing direction. This triples the
memory required for the runs, but in return, the RLE
encoding saves considerable space.  

• Since there is only one interpolated value per voxel-slice
4-neighborhood, zooming can only occur during the warp-
ing phase and not during the projection phase. This leads
to considerable blurring artifacts at zoom factors greater
than 2. The post-rendering magnification in fact is a major
source of the speedup for the shear-warp algorithm.

An implementation of the shear-warp algorithm is publicly
available as the volpack package [121] from Stanford University.

6.4  Domain Volume Rendering
In domain rendering, the spatial 3D data is first transformed

into another domain, such as compression, frequency, and wavelet
domain, and then a projection is generated directly from that
domain or with the help of information from that domain. The fre-
quency domain rendering applies the Fourier slice projection theo-
rem, which states that a projection of the 3D data volume from a
certain view direction can be obtained by extracting a 2D slice per-

Figure 15:  Anti-aliased splatting: (Left) A checkerboard tunnel
rendered in perspective with equal sized splats. Aliasing occurs
at distances beyond the black square. (Right) The same checker-
board tunnel rendered with scaled splats. The aliasing has been
replaced by blur. 
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pendicular to that view direction out of the 3D Fourier spectrum
and then inverse Fourier transforming it. This approach obtains the
3D volume projection directly from the 3D spectrum of the data,
and therefore reduces the computational complexity for volume
rendering from O(N3) to O(N2log(N)) [64][198][326]. A major
problem of frequency domain volume rendering is the fact that the
resulting projection is a line integral along the view direction
which does not exhibit any occlusion and attenuation effects. Tot-
suka and Levoy [326] proposed a linear approximation to the expo-
nential attenuation [276] and an alternative shading model to fit the
computation within the frequency-domain rendering framework.

The compression domain rendering performs volume render-
ing from compressed scalar data without decompressing the entire
data set, and therefore reduces the storage, computation and trans-
mission overhead of otherwise large volume data. For example,
Ning and Hesselink [241][242] first applied vector quantization in
the spatial domain to compress the volume and, then directly ren-
dered the quantized blocks using regular spatial domain volume
rendering algorithms. Fowler and Yagel [78] combined differential
pulse-code modulation and Huffman coding, and developed a loss-
less volume compression algorithm, but their algorithm is not cou-
pled with rendering. Yeo and Liu [370] applied discrete cosine
transform based compression technique on overlapping blocks of
the data. Chiueh et al. [39] applied the 3D Hartley transform to
extend the JPEG still image compression algorithm [332] for the
compression of subcubes of the volume, and performed frequency
domain rendering on the subcubes before compositing the resulting
sub-images in the spatial domain. Each of the 3D Fourier coeffi-
cients in each subcube is then quantized, linearly sequenced
through a 3D zig-zag order, and then entropy encoded. In this way,
they alleviated the problem of lack of attenuation and occlusion in
frequency domain rendering while achieving high compression

ratios, fast rendering speed compared to spatial volume rendering,
and improved image quality over conventional frequency domain
rendering techniques. More recently, Guthe et al. [101] and also
Sohn and Bajaj [305] have used principles from MPEG encoding
to render time-varying datasets in the compression domain.  

Rooted in time-frequency analysis, wavelet theory [40][59]
has gained popularity in the recent years. A wavelet is a fast decay-
ing function with zero averaging. The nice features of wavelets are
that they have local property in both spatial and frequency domain,
and can be used to fully represent the volumes with small number
of wavelet coefficients. Muraki [232] first applied wavelet trans-
form to volumetric data sets, Gross et al. [99] found an approxi-
mate solution for the volume rendering equation using orthonormal
wavelet functions, and Westermann [344][345] combined volume
rendering with wavelet-based compression. However, all of these
algorithms have not focused on the acceleration of volume render-
ing using wavelets. The greater potential of wavelet domain, based
on the elegant multiresolution hierarchy provided by the wavelet
transform, is to exploit the local frequency variance provided by
wavelet transform to accelerate the volume rendering in homoge-
neous areas. Guthe and Strasser [102] have recently used the wave-
let transform to render very large volumes at interactive frame
rates, on texture mapping hardware. They employ a wavelet pyra-
mid encoding of the volume to reconstruct, on the fly, a decompo-
sition of the volume into blocks of different resolutions. Here, the
resolution of each block is chosen based on the local error commit-
ted and the resolution of the screen area the block is projected onto.
Each block is rendered individually with 3D texture mapping hard-
ware, and the block decomposition can be used for a number of
frames, which amortizes the work spent on the inverse wavelet
transform to construct the blocks. 

7  ACCELERATION TECHNIQUES
The high computational complexity of volume rendering has

led to a great variety of approaches for its acceleration. In the cur-
rent section, we will discuss general acceleration techniques that
can benefit software as well as hardware implementations. We
have already mentioned a few acceleration techniques in the previ-
ous section, such as early ray termination [174], post-rendering
warps for magnified viewing [165], and the splatting of pre-inte-
grated voxel basis functions [349]. The latter two gave rise to inde-
pendent algorithms, that is, shear-warp [165] and splatting [349].
Acceleration techniques generally seek to take advantage of prop-
erties of the data, such as empty space, occluded space, and
entropy, as well as properties of the human perceptional system,
such as its insensitivity to noise over structural artifacts [86]. 

A number of techniques have been proposed to accelerate the
grid traversal of rays in image-order rendering. Examples are the
3D DDA (Digital Differential Analyzer) method [1][83], in which
new grid positions are calculated by fast integer-based incremental
arithmetic, and the template-based method [366], in which tem-
plates of the ray paths are precomputed and used during rendering
to quickly identify the voxels to visit. Early-ray termination can be
sophisticated into a Russian Roulette scheme [57] in which some
rays terminate with lower and others with higher accumulated
opacities. This capitalizes on the human eye’s tolerance to error
masked as noise [195]. In the object-order techniques, fast differ-
ential techniques to determine the screen-space projection of the
points as well as to rasterize the footprints [196][225] are also
available.  

Most of the object-order approaches deal well with empty
space - they simply don’t store and process it. In contrast, ray cast-
ing relies on the presence of the entire volume grid since it requires
it for sample interpolation and address computation during grid tra-
versal. Although opaque space is quickly culled, via early ray ter-

Figure 16:  The shear-warp algorithm. (a) mechanism, (b) inter-
polation scheme.
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mination, the fast leaping across empty space is more difficult. A
number of techniques are available to achieve this (see Fig. 17 for
an illustration of the methods described in the following text). The
simplest form of space leaping is facilitated by enclosing the object
into a set of boxes, possibly hierarchical, and first quickly deter-
mine and test the rays’ intersection with each of the boxes before
engaging into more time-consuming volumetric traversal of the
material within [147]. A better geometrical approximation is
obtained by a polyhedral representation, chosen crudely enough to
still maintain ease of intersection. In fact, one case utilize conven-
tional graphics hardware to perform the intersection calculation,
where one projects the polygons twice to create two Z- (depth)
buffers. The first Z-buffer is the standard closest-distance Z-buffer,
while the second is a farthest-distance Z-buffer. Since the object is
completely contained within the representation, the two Z-buffer
values for a given image plane pixel can be used as the starting and
ending points of a ray segment on which samples are taken. This
algorithm has been known as PARC (Polygon Assisted Ray Cast-
ing) [303] and it is part of the VolVis volume visualization system
[4][5], which also provides a multi-algorithm progressive refine-
ment approach for interactivity. By using available graphics hard-
ware, the user is given the ability to interactively manipulate a
polyhedral representation of the data. When the user is satisfied
with the placement of the data, light sources, and viewpoint, the Z-
buffer information is passed to the PARC algorithm, which pro-
duces a ray-cast image.  

A different technique for empty-space leaping was devised by
Zuiderfeld et al. [373] as well as Cohen and Shefer [44] who intro-
duced the concept of proximity clouds. Proximity clouds employ a
distance transform of the object to accelerate the rays in regions far
from the object boundaries. In fact, since the volume densities are
irrelevant in empty volume regions, one can simply store the dis-
tance transform values in their place and therefore storage is not
increased. Since the proximity clouds are the iso-distance layers
around the object’s boundaries, they are insensitive to the viewing
direction. Thus, rays that ultimately miss the object are often still
slowed down. To address this shortcoming, Sramek and Kaufman
[307] proposed a view-sensitive extension of the proximity clouds
approach. Wan [333] places a sphere at every empty voxel posi-
tion, where the sphere radius indicates the closest non-empty

voxel. They apply this technique for the navigation inside hollow
volumetric objects, as occurring in virtual colonoscopy [118], and
reduce a ray’s space traversal to just a few hops until a boundary
wall is reached. Finally, Meissner [209] suggested an algorithm
that quickly re-computes the proximity cloud when the transfer
function changes.  

Proximity clouds only handle the quick leaping across empty
space, but methods are also available that traverse occupied space
faster when the entropy is low. These methods generally utilize a
hierarchical decomposition of the volume where each non-leaf
node is obtained by low-pass filtering its children. Commonly this
hierarchical representation is formed by an octree [204] since these
are easy to traverse and store. An octree is the 3D extension of a
quadtree [279], which is the 2D extension of a binary tree. Most
often a non-leaf node stores the average of its children, which is
synonymous with a box filtering of the volume, but more sophisti-
cated filters are possible. Octree don’t have to be balanced [353]
nor fully expanded into a single root node or into single-voxel leaf
nodes. The latter two give rise to a brick-of-bricks decomposition,
where the volume is stored as a flat hierarchy of bricks of size n3 to
improve cache-coherence in the volume traversal. Parker et al.
[250][251] utilize this decomposition for the raycasting of very
large volumes, and they also gives an efficient indexing scheme to
quickly find the memory address of the voxels located in the 8-
neighborhood required for trilinear interpolation. 

When octrees are used for entropy-based rendering, non-leaf
node store either an entropy metric of its children, such as standard
deviation [57], minimum-maximum range [353], or Lipschitz
range [311], or a measure of the error committed when the children
are not rendered, such as the root mean square or the absolute error
[102]. The idea is to either have the user specify a tolerable error
before the frame is rendered or to make the error dependent on the
time maximally allowed to render the frame, which is known as
time-critical rendering. In either case, the rays traversing the vol-
ume will advance across the volume, but also transcend up and
down the octree, based on the metric used, which will either accel-
erate or decelerate them on their path. A method called β-accelera-
tion will make this traversal also sensitive to the ray’s accumulated
opacity so far. The philosophy here is that the observable error
from using a coarser node will be relatively small when it is
weighted by a small transparency in (13). Note, however, that the
interpolated opacity must be normaliuzed to unit stepsize before it
is used in the compositing equation (see chapter 6 in [183]).  

Octrees are also easily used with object-order techniques,
such as splatting. Laur and Hanrahan [169] have proposed an
implementation that approximates non-leaf octree nodes by kernels
of a radius that is twice the radius of the childrens’ kernels, which
gives rise to a magnified footprint. They store the childrens’ aver-
age as well as an error metric based on their standard deviation in
each parent node and use a pre-set error to select the nodes during
rendering. While this approach uses non-leaves nodes during ren-
dering, other splatting approaches only exploit them for fast occlu-
sion culling. Lee and Ihm [170] as well as Mora et al. [222] store
the volume as a set of bricks which they render in conjunction with
a dynamically computed hierarchical occlusion map to quickly cull
voxels within occluded bricks from the rendering pipeline. Hierar-
chical occlusion maps [371] are continuously updated during the
rendering and thus store a hierarchical opacity map of the image
rendered so far. Regions in which the opacity is high are tagged,
and when octree nodes fall within such a region all voxels con-
tained in them can be immediately culled. If the octree node does
not fall into a fully opaque region then it has to be subdivided and
its children are subjected to the same test. An alternative scheme
that performs occlusion culling on a finer scale than the box-basis
of an octree decomposition is to calculate an occlusion map in
which each pixel represents the average of all pixels within the

Figure 17:  Various object approximation techniques: (blue) iso-
surface of the object, (lightly shaded) discretized object (proxim-
ity cloud =0), (red) bounding box, (green) polygonal hull used in
PARC, (darker shaded areas) proximity clouds with grey level
indicating distance to the object. Note also that while the right
magenta ray is correctly sped up by the proximity clouds, the left
magenta ray missing the object is unnecessarily slowed down.
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box-neighborhood covered by a footprint [228]. Occlusion of a
particular voxel is then determined by indexing the occlusion map
with the voxel’s screen-space coordinate to determine if its foot-
print must be rasterized. One could attempt to merge these two
methods to benefit both from the large-scale culling afforded by
the octree-nodes and from the fine-scale culling of the average-
occlusion map.      

Hierarchical decomposition is not the only way to reduce the
number of point primitives needed to represent an object for ren-
dering. An attractive solution that does not reduce the volume’s
frequency content, by ways of averaging, is to exploit more space-
efficient grids for storage. The most optimal regular lattices are the
face-centered cartesian (FCC) lattices (see Fig. 19) [48][63]. The
FCC lattices give the densest packings of a set of equal-sized
spheres. If the frequency spectrum of the signal represented in the
volume is spherical (and many of them are due to the sampling ker-
nel used for volume generation), then they can be packed in the
FCC lattice (see Fig. 18 for the 2D equivalent, the hexagonal lat-
tice). The FCC lattice’s dual in the spatial domain is the body-cen-
tered cartesian (BCC) lattice, and the spacing of samples there is
the reciprocal of that in the frequency domain, according to the
Fourier scaling theorem [18]. This BCC grid gives rise to two
interleaved CC grids, each with a sampling interval of .and

 apart, which implies that a volume, when sampled into a
BCC grid, only requires =71% of the samples of the usual
cubic cartesian (CC) grid [234][323] (see Fig. 19 for an illustration
of the grid and Fig. 20 for images). The theorem extends to higher
dimensions as well, for example, a time-varying (4D) volume can
be stored in a 4D BCC at only 50% of the 4D CC samples. The
BCC grids are best used in conjunction with point-based object-
order methods, since these use the spherical (radially symmetric)
filter required to preserve the spherical shape of the BCC grid-sam-

pled volume’s frequency spectrum. The reconstruction of a BCC
grid with trilinear filters can lead to aliasing since the trilinear fil-
ter’s frequency response is not radially symmetric and therefore
will include higher spectra when used for interpolation.       

A comprehensive system for accelerated software-based vol-
ume rendering is the UltraVis system devised by Knittel [158]. It
can render 2563 volume at 10 frames/s. It achieves this by optimiz-
ing cache performance during both volume traversal and shading,
which is rooted in the fact that good cache management is key to
achieve fast volume rendering, since the data are so massive. As
we have mentioned before, this was also realized by Parker et al.
[250][251], and it plays a key role in both custom and commodity
hardware approaches as well, as we shall see later. The UltraVis
system manages the cache by dividing it into four blocks: one
block each for volume bricks, transfer function tables, image
blocks, and temporary buffers. Since the volume can only map into
a private cache block, it can never be swapped out by a competing
data structure, such as a transfer function table or an image tile
array. This requires that the main memory footprint of the volume
is four times as high since no volume data may be stored in an
address space that would map outside the volume’s private cache
slots. By using a bricked volume decomposition in conjunction
with a flock of rays that are traced simultaneously across the brick,
the brick’s data will only have to be brought in once before it can
be discarded when all rays have finished its traversal. A number of
additional acceleration techniques give further performance.     

Another type of acceleration is achieved by breaking the vol-
ume integral of (12) or (15) into segments and storing the compos-

Figure 18:  The cartesian grid (left) vs. the hexagonal grid (right)
as two possible frequency domain lattices. The latter provides
the tightest packing of a discrete 2D signal’s circularly-bounded
frequency spectrum. (Here, the dark, red circle contains the main
spectrum, while the others contain the replicas or aliases.)
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Figure 19:  Various grid cells, drawn in relative proportions. We
assume that the sampling interval in the CC grid is T=1. (a)
Cubic cartesian (CC) for cartesian grids (all other grid cells
shown are for grids that can hold the same spherically bandlim-
ited, signal content); (b) Face-centered cubic (FCC); (c) Body-
centered (BCC) cell. 
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Figure 20:  Foot dataset rendered on: (left) Cubic Cartesian (CC)
grid, (right) Body Centered (BCC) grid. The renderings are
almost identical, but the BCC rendering took 70% of the time of
the CC rendering.  

Figure 21:  (a) The volume is decomposed into slabs, and each
slab is rendered into an image from view direction Va. The ray
integrals for view direction Vb can now be approximated with
higher accuracy by combining the appropriate partial ray inte-
grals from view Va (stored in the slab image). Interpolation is
used to obtain partial integrals at non-grid positions. (b) The
three billboard images can be composited for any view, such as
Vb shown here. 
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ited color and opacity for each partial ray into a data structure. The
idea is then to re-combine these partial rays into complete rays for
images rendered at viewpoints near the one for which the partial
rays were originally obtained (see Fig. 21). This saves the cost for
fully integrating all rays for each new viewpoint and reduces it to
the expense of compositing a few partial segments per ray, which is
much lower. This method falls into the domain of image-based
rendering (IBR) [33][34][203][284] and is, in some sense, a volu-
metric extension of the lumigraph [97] or lightfield [177], albeit
dynamically computed. However, one could just as well store a set
of partial rays into a static data structure to be used for volumetric-
style lumigraph rendering. This idea of using a cache of partial rays
for accelerated rendering was exploited by Brady et al.
[19][20][21] for the volume rendering at great perspective distor-
tions, such as found in virtual endoscopy applications [118]. Muel-
ler et al. [229] stored the rays in form of a stack of depth-layered
images and rendered these images warped and composited from
novel viewpoints within a 30° view cone, using standard graphics
hardware (see Fig. 22a). Since gaps may quickly emerge when the
layers are kept planar, it helps to also compute, on the fly, a coarse
polygonal mesh for each layer that approximates the underlying
object, and then map the images onto this mesh when rendering
them from a new viewpoint (see Fig. 22b and c). An alternative
method that uses a precomputed triangle mesh to achieve similar
goals for iso-surface volume rendering was proposed by Chen et al.
[32], while Yagel and Shi [368] warped complete images to near-
by viewpoints, aided by a depth buffer.    

8  CLASSIFICATION AND TRANSFER FUNCTIONS
In volume rendering we seek to explore the volumetric data

using visuals. This exploration process aims to discover and
emphasize interesting structures and phenomena embedded in the
data, while de-emphasizing or completely culling away occluding
structures that are currently not of interest. Clipping planes and
more general clipping primitives [342] provide geometric tools to
remove or displace occluding structures in their entirety. On the
other hand, transfer functions which map the raw volume density
data to color and transparencies, can alter the overall look-and-feel
of the dataset in a continuous fashion.  

The exploration of a volume via transfer functions constitutes
a navigation task, which is performed in a 4D transfer function
space, assuming three axes for RGB color and one for transparency
(or opacity). It is often easier to specify colors in HSV (Hue, Satu-
ration, Value) color space, since it provides separate mappings for
color and brightness. Simple algorithms exist to convert the HSV
values into the RGB triples used in the volume rendering [75].
Fig. 23 shows a transfer function editor that also allows the map-
ping of the other rendering attributes in equation (9). 

A generalization of the usual RGB color model has been pur-
sued in spectral volume rendering [253], where the light transport
occurs within any number of spectral bands. Noordmans [243]

employed this concept to enable achromatic, elastic, and inelastic
light scattering, which facilitates the rendering of inner structures
through semi-transparent, yet solid (i.e., non-fuzzy) exterior struc-
tures. Bergner et al. [13] described a spectral renderer that achieves
interactive speeds by factoring the illumination term out of the
spectral volume rendering integral and using post-illumination for
the final lighting (a related technique, in RGB space, using a Fou-
rier series approach was presented by Kaneda et al. [136]). They
describe a system which allows designers of a guided visualization
to specify a set of lights and materials, whose spectral properties
allow users to emphasize, de-emphasize, or merge specific struc-
tures by simply varying the intensity of the light sources.      

Given the large space of possible settings, choosing an effec-
tive transfer function can be a daunting task. It is generally more
convenient to gather more information about the data before the
exploration via transfer functions begins. The easiest presentation
of support data is in the form of 1D histograms, which are data sta-
tistics collected as a function of raw density, or some other quan-
tity. A histogram of density values can be a useful indicator to
point out dominant structures with narrow density ranges. A fuzzy
classification function [61] can then be employed to assign differ-
ent colors and opacities to these structures (see Fig. 24). This
works well if the data are relatively noise-free, the density ranges
of the features are well isolated, and not many distinct materials
(e.g., bone, fat, and skin) are present. In most cases, however, this
is not the case. In these settings, it helps to also include the first and
second derivative into the histogram-based analysis [151]. The
magnitude of the first derivative (the gradient strength) is useful
since it peaks at densities where interfaces between different fea-
tures exist (see Fig. 25). Plotting a histogram of first derivatives

Figure 22:  IBR-assisted volume rendering: (a) on-the-fly com-
puted mesh derived from the slab’s closest-voxel buffer, (b) head
rendered from original view point, (c) head rendered from a view
30° away. 
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Figure 23:  A transfer function editor with a HSV color palette
and mapping of densities to various material properties.
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Figure 24:  Histogram and a fuzzy classification into different
materials.
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over density yields an arc that peaks at the interface density (see
Fig. 26). Knowing the densities at which feature boundaries exist
narrows down the transfer function exploration task considerably.
One may now visualize these structures by assigning different col-
ors and opacities within a narrow interval around these peaks.
Levoy [174] showed that a constant width of (thick) surface can be
obtained by making the width of the chosen density interval a lin-
ear function of the gradient strength (see Fig. 27). Kindlemann and
Durkin [151] proposed a technique that uses the first and second
derivative to generate feature-sensitive transfer functions automati-
cally. This method provides a segmentation of the data, where the
segmentation metric is a histogram of the first and second deriva-
tive. Tenginakai and Machiraju [321] extended the arsenal of met-
rics to higher order moments, and compute from them additional
measures, such as kurtosis and skew, in small neighborhoods.
These can provide better delineations of features in histogram
space. Another proposed analysis method is based on maxima in
cumulative Laplacian-weighted density histograms [254].      

 There are numerous articles (we can only reference a few
here) on the topic of automatic segmentation of images and higher-
dimensional datasets, using neural network-type approaches [191],
statistical classifiers [285], region growing [160], the watershed
algorithm [293], and many others. To that end, Tiede [325]
describes an algorithm for rendering the tagged and segmented

volumes at high quality. However, despite the great advances that
have been made, automated segmentation of images and volumes
remains a difficult task and is also in many cases observer and task
dependent. In this regard, semi-supervised segmentation algo-
rithms where users guide the segmentation process in an interac-
tive fashion have a competitive edge. There are two examples for
such systems: the PAVLOV architecture that implements an inter-
active region-grow to delineate volumetric features of interest
[160], and the dual-domain approach of Kniss et al. [154][155],
who embed Kindlemann’s algorithm into an interactive segmenta-
tion application. Here, users work simultaneously within two
domains, i.e., the histogram-coupled transfer function domain and
the volume rendering domain, to bring out certain features of inter-
est. To be effective, an interactive (hardware-based) volume ren-
derer is required, and the technique could embed more advanced
metrics as well [321].  

Another way to analyze the data is to look for topological
changes in the iso-contours of the volume, such as a merge of split
of two contours (see Fig. 28). These events are called critical
points. By topologically sorting the critical points as a function of
density one can construct a contour graph, contour tree, or Hyper
Reeb Graph which yields a roadmap for an exploration of the vol-
ume [8][30][84][163][291][320]. One can either use the contour
graph to come up with an automatic transfer function (simply posi-

Figure 25:  The relationship of densities and their first and sec-
ond derivatives at an object boundary (shown as the box in the
picture on the right).
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Figure 26:  Histograms of (a) first and (b) second derivative
strengths over density. In the concentric ring image (top row),
the first arc is due to the background-outer ring interface, the sec-
ond arc is due to the outer-inner ring interface, and the large arc
is due to the background-inner ring interface that spans the wid-
est density range. The second row shows the results of the same
analysis for the CT head volume. (Images from [151].)
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Figure 27:  Gradient strength-dependent density range for iso-
surface opacities [174].

Figure 28:  Simple contour graph. The first topological event
occurs when the two inner contours are born at an iso-value of
10. The second topological event occurs at the iso-value at
which the two inner contours just touch and give way to a single
contour at iso-value=30.
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tion an iso-surface between two nodes), or one can use it to guide
users in the volume exploration process. A large number of critical
points is potentially generated, especially when the data are noisy.
Fig. 29 illustrates how features can be managed once they have
been detected.   

There has also been a significant body of work on more spe-
cific segmentation and volume analysis processes, which aim to
identify, track, and tag particular features of interest, such as vorti-
ces, streamlines, and turbulences [10][11][213][297][298][359].
Once extracted, the features can then be visualized in form of
icons, glyphs, geometry, or volumetric objects. These data mining
methods are particular attractive for the exploration of very large
data sets, where volume exploration with conventional means can
become intractable. 

All of the methods presented so far base the transfer function
selection on a prior analysis of the volume data. Another suggested
strategy has been to render a large number of images with arbitrary
transfer function settings and present these to the user, who then
selects a subset of these for further refinement by application of
genetic algorithms. This approach has been taken by the Design
Galleries project [199], which is based, in part, on the method pub-
lished by He et al. [112]. A good sample of all of the existing
approaches (interactive trial-and-error, metric-based, contour
graph, and design galleries) were squared off in a symposium panel
[258]. 

9  VOLUMETRIC GLOBAL ILLUMINATION
In the local illumination equation (9), the global distribution

of light energy is ignored and shading calculations are performed
assuming full visibility of and a direct path to all light sources.
While this is useful as a first approximation, the incorporation of
global light visibility information (shadows, one instance of global
illumination) adds a great deal of intuitive information to the
image. This low albedo [134][302] lighting simulation has the abil-
ity to cast soft shadows by volume density objects. Generous
improvements in realism are achieved by incorporating a high
albedo lighting simulation [134][302], which is important in a
number of applications (e.g., clouds [201], skin [104], and stone
[60]). While some of these used hierarchical and deterministic
methods, most of these simulations used stochastic techniques to
transport lighting energy among the elements of the scene. We
wish to solve the illumination transport equation for the general
case of global illumination. The reflected illumination I(γ,ω) in
direction ω at any voxel γ can be described as the integral of all
incident radiation from directions ω’, modulated by the phase

function q(ω,ω’):

(16)

where Γ is the set of all directions and V is the set of all voxels v.
This means that the illumination at any voxel is dependent upon
the illumination at every other voxel. In practice, this integral-
equation is solved by finite repeated projection of energy among
voxels. This leads to a finite energy transport path, which is gener-
ally sufficient for visual fidelity.

In physics, equations of this sort are solved via Monte-Carlo
simulations. A large set of rays is cast from the energy sources into
the volume and at each voxel a “dice is rolled” to determine how
much energy is absorbed and how much energy is scattered and
into what direction. After many iterations the simulation is
stopped, and a final scattering of the radiosity volume is performed
towards an arbitrarily positioned eye point. A practical implemen-
tation of this process is volumetric backprojection. Backprojection
is usually performed on a voxel-by-voxel basis, since this is the
most obvious and direct method of computation. For example, in
volumetric ray tracing [302], as illumination is computed for a vol-
ume sample, rays are cast toward the light sources, sampling the
partial visibility of each. In computing high-albedo scattering illu-
mination, Max [201] used the method of discrete ordinates to trans-
port energy from voxel to voxel. For calculations of volumetric
radiosity, voxels are usually regarded as discrete elements in the
usual radiosity calculation on pairs of elements, thereby computing
on a voxel-by-voxel basis [274][302]. Particle tracing methods for
global illumination track paths of scattered light energy through
space starting at the light sources [132].

In many cases, the back-
projection can be reorga-
nized into a single sweep
through the volume, pro-
cessing slice-by-slice.
Because sunlight travels in
parallel rays in one direc-
tion only, Kajiya and Von
Herzen [134] calculated
the light intensity of a
cloud-like volume, one
horizontal slice at a time.
A similar technique was
demonstrated as part of the
Heidelberg ray-tracing
model [206] in which
shadow rays were propa-

gated simultaneously slice-by-slice and in the same general direc-
tion as rendering. Dachille et al. [54] described a backprojection
approach that scatters the energy in the volume by a multi-pass
slice-by-slice sweep at random angles. He also devised a custom
hardware architecture for a cache-efficient implementation of this
algorithm.   

Kniss et al. [156][157] proposed a single-pass algorithm that
approximates the scattering of light within a volume by a recursive
slice-blurring operation, starting at the light source. The profile of
the blurring filter is determined by the user-specified phase func-
tion. The method exploits 3D texture mapping hardware in con-
junction with a dual image buffer, and runs at interactive frame
rates. One buffer, the repeatedly blurred (light) buffer, contains the
transported and scattered light energy on its path away from the
source, and the other (frame) buffer holds the energy headed for
the eye and is attenuated by the densities along the path to the eye.
At each path increment energy is transferred from the light buffer

Figure 29:  Feature management with contour graphs. Once the
features are detected they can be isolated and be given private
visual attributes. This is not possible with global transfer func-
tions. For example, the two valves in the engine block are now
separate features and one can be colored in different shades (left
image), or the two lobster claws are now different features, and
one can be rendered opaque and the other rendered translucent
(right image).
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Figure 30:  Engine block rendered
without (left) and with (right) glo-
bal illumination. We observe that
only the multiply scattered light is
able to illuminate the hollow spots.
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to the frame buffer.

10  RENDERING ON PARALLEL ARCHITECTURES
Much research towards parallel ray-casting has been reported

in the literature, primarily due to the simplicity of the algorithm. To
avoid volume data redistribution costs, researchers have proposed
the distribution of data to processing nodes, where each node pro-
cesses its own data for all frames or views. Each node generates a
partial image with its data, which are then accumulated and com-
posited into the final image [120][193][194][220][250][251]. 

Researchers have also investigated partitioning screen space
into square tiles or contiguous scanlines, to be used as the basic
task to be sent or assigned to processing nodes. For better load bal-
ancing, the task queue can be ordered in decreasing task size, such
that the concurrency gets finer until the queue is exhausted [31].
Load balancing can also be achieved by having nodes steal smaller
tasks from other nodes, once they have completed their own tasks
[238][350]. Finally, time-out stamps for each node can be added,
such that if the node cannot finish its task before the time-out, it
takes the remnant of the task, re-partitions it and re-distributes it
[50].  

A parallel shear-warp implementation on shared-memory
architectures has been reported in [166], with decent timing bench-
marks. Amin et. al [2] ported the shear-warp algorithm onto a dis-
tributed memory architecture, by partitioning in sheared volume
space and using an adaptive load balancing. The parallel shear-
warp implementation has been improved on distributed memory
architectures by dividing the volume data after the shear operation
into subvolumes parallel to an intermediate image plane of the
shear-warp factorization [280].

Splatting and cell projection methods have also been parallel-
ized using a sort-last paradigm [218]. The community has
researched parallel splatting algorithms [182] that do not utilize
occlusion-based acceleration. The volume data is distributed in
either slices (axis-aligned planes) [69] or blocks [194] to process-
ing nodes. Those are then rendered, in parallel, to partial images
which are composited for the final image by the master node.
Speed-ups can further be achieved by only passing the non-empty
parts of the partial images [69] or by parallelizing the final com-
positing stage using a screen space partitioning [182]. Hierarchical
data structures such as a k-d tree can be applied to facilitate prompt
compositing and occlusion culling [194]. Machiraju and Yagel
[196] report a parallel implementation of splatting, where the tasks
are defined by a subvolumes. Each processor is assigned a subvol-
ume. The images are composited together in depth-sort order, also
performed in parallel. This implementation splats all voxels, no
matter if they are empty or occluded, while Huang [123] presents a
parallel splatting algorithm that takes into account visibility and
occlusion, which is considerably more challenging for load-balanc-
ing. PVR [294] is a parallel ray casting kernel that exploits image-
space, object-space, and time-space parallelism. See also [192] for
a tutorial article on two highly scalable, parallel software volume
rendering algorithms for unstructured grids. 

11  SPECIAL-PURPOSE RENDERING HARDWARE
The high computational cost of direct volume rendering

makes it difficult for sequential implementations and general-pur-
pose computers to deliver the targeted level of performance,
although the recent advances in commodity graphics hardware
have started to blur these boundaries (as we shall see in the next
section). This situation is aggravated by the continuing trend
towards higher and higher resolution datasets. For example, to ren-
der a dataset of 10243 16-bit voxels at 30 frames per second
requires 2 GBytes of storage, a memory transfer rate of 60 GBytes

per second and approximately 300 billion instructions per second,
assuming 10 instructions per voxel per projection. 

The same way as the special requirements of traditional com-
puter graphics led to high-performance graphics engines, volume
visualization naturally lends itself to special-purpose volume ren-
derers that separate real-time image generation from general-pur-
pose processing. This allows for stand-alone visualization
environments that help scientists to interactively view their data on
a single user workstation, augmented by a volume rendering accel-
erator. Furthermore, a volume rendering engine integrated in a
graphics workstation is a natural extension of raster based systems
into 3D volume visualization. Several researchers have proposed
special-purpose volume rendering architectures [137] (chapter 6)
[369] [142] [95] [130] [205] [247] [314] [315] [159] [211] [212].
Most recent research focuses on accelerators for ray-casting of reg-
ular datasets. Ray-casting offers room for algorithmic improve-
ments while still allowing for high image quality. More recent
architectures [115] include VOGUE, VIRIM, Cube, and VIZARD.
The VolumePro board [259] is a commercial implementation of the
Cube architecture. 

VOGUE [159], a modular add-on accelerator, is estimated to
achieve 2.5 frames per second for 2563 datasets. For each pixel a
ray is defined by the host computer and sent to the accelerator. The
VOGUE module autonomously processes the complete ray, con-
sisting of evenly spaced resampling locations, and returns the final
pixel color of that ray to the host. Several VOGUE modules can be
combined to yield higher performance implementations. For exam-
ple, to achieve 20 projections per second of 5123 datasets requires
64 boards and a 5.2 GB per second ring-connected cubic network.

VIRIM [100] is a flexible and programmable ray-casting
engine. The hardware consists of two separate units, the first being
responsible for 3D resampling of the volume using lookup tables to
implement different interpolation schemes. The second unit per-
forms the ray-casting through the resampled dataset according to
user programmable lighting and viewing parameters. The underly-
ing ray-casting model allows for arbitrary parallel and perspective
projections and shadows. An existing hardware implementation for
the visualization of 256x256x128 datasets at 10 frames per second
requires 16 processing boards.

The Cube project aims at the realization of high-performance
volume rendering systems for large datasets and pioneered several
hardware architectures. Cube-1, a first generation hardware proto-
type, was based on a specially interleaved memory organization
[143], which has also been used in all subsequent generations of
the Cube architecture. This interleaving of the n3 voxels enables
conflict-free access to any ray parallel to a main axis of n voxels. A
fully operational printed circuit board (PCB) implementation of
Cube-1 is capable of generating orthographic projections of 163

datasets from a finite number of predetermined directions in real-
time. Cube-2 was a single-chip VLSI implementation of this proto-
type [9].

To achieve higher performance and to further reduce the criti-
cal memory access bottleneck, Cube-3 introduced several new con-
cepts [262][264][265]. A high-speed global communication
network aligns and distributes voxels from the memory to several
parallel processing units and a circular cross-linked binary tree of
voxel combination units composites all samples into the final pixel
color. Estimated performance for arbitrary parallel and perspective
projections is 30 frames per second for 5123 datasets. Cube-4
[261][263] has only simple and local interconnections, thereby
allowing for easy scalability of performance. Instead of processing
individual rays, Cube-4 manipulates a group of rays at a time. As a
result, the rendering pipeline is directly connected to the memory.
Accumulating compositors replace the binary compositing tree. A
pixel-bus collects and aligns the pixel output from the compositors.
Cube-4 is easily scalable to very high resolutions of 10243 16-bit
15



voxels and true real-time performance implementations of 30
frames per second. 

EM-Cube [248] marked the first attempt to design a commer-
cial version of the Cube-4 architecture. Its VLSI architecture fea-
tures four rendering pipeline and four 64 Mbit SDRAMs to hold
the volume data. VolumePro500 was the final design, in form of an
ASIC, and was released to market by Mitsubishi Electric in 1999
[259]. VolumePro has hardware for gradient estimation, classifica-
tion, and per-sample Phong illumination. It is a hardware imple-
mentation of the shear-warp algorithm, but with true trilinear
interpolation which affords very high quality. The final warp is
performed on the PC’s graphics card. The VolumePro streams the
data through four rendering pipelines, maximizing memory
throughput by using a two-level memory block- and bank-skewing
mechanism to take advantage of the burst mode of its SDRAMs.
No occlusion culling or voxel skipping is performed. Advanced
features such as gradient magnitude modulation of opacity and
illumination, supersampling, cropping and cut planes are also
available. The system renders 500 million interpolated, Phong illu-
minated, composited samples per second, which is sufficient to
render volumes with up to 16 million voxels (e.g., 2563 volumes)
at 30 frames per second.

While the VolumePro uses a brute-force rendering mode in
which all rays are cast across the volume, the VIZARD II architec-
ture [211] implements an early ray-termination mechanism. It has
been designed to run on a PCI board populated with four FPGAs, a
DSP, and SDRAM and SRAM memory. In contrast to the Volume-
Pro, it supports perspective rendering, but uses a table-based gradi-
ent vector lookup scheme to compute the gradients at sample
positions. The VIZARD II board is anticipated to render a 2563

dataset at interactive framerates. The VolumePro1000 [364] is the
successor of the VolumePro500 and employs a different factoriza-
tion of the viewing matrix, termed shear-image order ray casting,
which is a method of ray casting that eliminates shear-warp’s inter-
mediate image and final warp step while preserving its memory
access efficiency. VolumePro1000 uses empty space skipping and
early ray termination, and it can render up to 109 samples/s.

The choice of whether one adopts a general-purpose or a spe-
cial-purpose solution to volume rendering depends upon the cir-
cumstances. If maximum flexibility is required, general-purpose
appears to be the best way to proceed. However, an important fea-
ture of graphics accelerators is that they are integrated into a much
larger environment where software can shape the form of input and
output data, thereby providing the additional flexibility that is
needed. A good example is the relationship between the needs of
conventional computer graphics and special-purpose graphics
hardware. Nobody would dispute the necessity for polygon graph-
ics acceleration despite its obvious limitations. The exact same
argument can be made for special-purpose volume rendering archi-
tectures. The line between general-purpose and special-purpose,
however, has become somewhat blurred in the past couple of years
with to the arrival of advanced, programmable commodity GPUs
(Graphics Processing Units). Although these boards do not, and
perhaps never will, provide the full flexibility of a CPU, they gain
more generality as a general computing machine with every new
product cycle. In the following section, we shall discuss the recent
revolution in GPUs in light of their impact on interactive volume
rendering and processing.

12  GENERAL-PURPOSE RENDERING HARDWARE
Another opportunity to accelerate volume rendering is to uti-

lize the texture mapping capability of graphics hardware. The first
such implementation was devised by Cabral et al. [26] and ran on
SGI Reality Engine workstations. There are two ways to go about
this. Either one represents the volume as a stack of 2D textures,

one texture per volume slice, or as one single 3D texture, which
requires more sophisticated hardware. In the former case, three
texture stacks are needed, one for each major viewing direction.
An image is then rendered by choosing the stack that is most paral-
lel to the image plane, and rendering the textured polygons to the
screen in front-to-back or back-to-front order. If the machine has
3D texture capabilities, then one specifies a set of slicing planes
parallel to the screen and composites the interpolated textures in
depth order. The 3D texturing approach generally provides better
images since the slice distance can be chosen arbitrarily small and
no popping caused by texture stack switching can occur. While the
early approaches did not provide any shading, VanGelder and Kim
[92] introduced a fast technique to pre-shade the volume on the fly
and then slice and composite a RGB volume to obtain an image
with shading effects. Meißner et al. [210] provided a method to
enable direct diffuse illumination for semi-transparent volume ren-
dering. However, in this case multiple passes through the rasteriza-
tion hardware led to a significant loss in rendering performance.
Instead, Dachille et al. [53] proposed a one-pass approach that
employs 3D texture hardware interpolation together with software
shading and classification. Westermann and Ertl [346] introduced a
fast multi-pass approach to display shaded isosurfaces. Both Boada
et al. [16] and LaMar et al. [167] subdivide the texture space into
an octree, which allows them to skip nodes of empty regions and
use lower-resolution textures for regions far from the view point or
of lower interest.

The emergence of advanced PC graphics hardware has made
texture-mapped volume rendering accessible to a much broader
community, at less than 2% of the cost of the workstations that
were previously required. However, the decisive factor stemming
the revolution that currently dominates the field was the manufac-
turer’s (e.g., NVidia, ATI, and 3DLabs) decision to make two of
the main graphics pipeline components programmable. These two
components are the vertex shaders, the units responsible for the
vertex transformations (GLs Modelview matrix), and the fragment
shaders, which are the units that take over after the rasterizer (GLs
Projection matrix). The first implementation that used these new
commodity GPUs for volume rendering was published by Rezk-
Salama et al. [269], who used the stack-or-textures approach since
3D texturing was not supported at that time. They overcame the
undersampling problems associated with the large inter-slice dis-
tance at off-angles by interpolating, on-the-fly, intermediate slices,
using the register combiners in the fragment shader compartment.
Engel et al. [70] replaced this technique by the use of pre-inte-
grated transfer function tables (see our previous section on transfer
functions). The implementation can perform fully-shaded semi-
transparent and iso-surface volume rendering at 1-4 frames per
second for 2563 volumes, using an NVidia GeForce3.

To compute the gradients required for shading, one must also
load a gradient volume into the texture memory. The interpolation
of a gradient volume without subsequent normalization is gener-
ally incorrect, but the artifacts are not always visible. Meißner and
Guthe [207] use a shading cube texture instead, which eliminates
this problem. Even the most recent texture mapping hardware can-
not reach the performance of the specialized volume rendering
hardware, such as the VolumePro500 and the new VolumePro
1000, at least not when volume are rendered brute-force. There-
fore, current research efforts have concentrated on reducing the
load for the fragment shaders. Level-of-detail methods have been
devised that rasterize lower-resolution texture blocks whenever the
local volume detail or projected resolution allow them to do so
[102][173]. Li and Kaufman [179][180] proposed an alternative
approach that approximates the object by a set of texture boxes,
which efficiently clips empty space from the rasterization. 

Commodity graphics hardware also found much use for the
rendering of irregular grids and in non-photorealistic rendering, as
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will be discussed shortly. In addition, GPUs have also been exten-
sively used for other non-graphics tasks, such as matrix computa-
tions [168], numerical simulations [17][108][181], and computed
tomography [38][225][365]. These applications view the GPUs as
general purpose SIMD machines, with high compute and memory
bandwidth, and the latest feature: floating point precision. It should
be noted, however, that the limited capacity of the texture memory
(currently 128MB to 256MB) and the slow CPU-GPU AGP bus
bandwidth currently present the bottlenecks.

13  IRREGULAR GRIDS
All the algorithms discussed above handle only regular grid-

ded data. Irregular gridded data come in a large variety [306],
including curvilinear data or unstructured (scattered) data, where
no explicit connectivity is defined between cells (one can even be
given a scattered collection of points that can be turned into an
irregular grid by interpolation [240][202]). Fig. 31 illlustrates the
most prominent grid types, and Fig. 32 shows an example of a
translucent rendering of an irregular grid dataset.  

For rendering purposes, manifold (locally homeomorphic to
R3 grids composed of convex cells are usually necessary. In gen-
eral, the most convenient grids for rendering purposes are tetrahe-
dral grids and hexahedral grids. One disadvantage of hexahedral
grids is that the four points on the side of a cell may not necessarily
lie on a plane forcing the rendering algorithm to approximate the
cells by convex ones during rendering. Tetrahedral grids have sev-
eral advantages, including easier interpolation, simple representa-
tion (specially for connectivity information because the degree of
the connectivity graph is bounded, allowing for compact data
structure representation), and the fact that any other grid can be
interpolated to a tetrahedral one (with the possible introduction of
Steiner points). Among their disadvantages is the fact that the size
of the datasets tend to grow as cells are decomposed into tetrahedra
and sliver tetrahedra may be generated. In the case of curvilinear
grids, an accurate (and naive) decomposition will make the cell
complex contain five times as many cells  

As compared to regular grids, operations for irregular grids
are more complicated and the effective visualization methods are
more sophisticated in all fronts. Shading, interpolation, point loca-
tion, etc., are all harder (and some even not well defined) for irreg-
ular grids. One notable exception is isosurface generation [185]
that even in the case of irregular grids is fairly simple to compute
given suitable interpolation functions. Slicing operations are also
simple [306]. 

Volume rendering of irregular grids is a hard operation and

there are several different approaches to this problem. The simplest
and most inefficient is to resample the irregular grid to a regular
grid. In order to achieve the necessary accuracy, a high enough
sampling rate has to be used what in most cases will make the
resulting regular grid volume too large for storage and rendering
purposes, not mentioning the time to perform the re-sampling. To
overcome the need to fix the resolution of the regular grid to the
smallest cell in the irregular grid, one can sample the data into a
detail-adaptive octree whose local height is determined by the local
granularity of the grid [173]. The octree decomposition also allows
the grid to be rendered within a time-critical rendering framework. 

One approach for rendering irregular grids is the use of feed-
forward (or projection) methods, where the cells are projected onto
the screen one by one, accumulating their contributions incremen-
tally to the final image [354][202][352][292]. The projection algo-
rithm that has gained popularity is the Projected Tetrahedra (PT)
algorithm by Shirley and Tuchman [292]. It uses the projected pro-
file of each tetrahedron with respect to the image plane to decom-
pose it into a set of triangles. This gives rise to four classes of
projections, which are shown in Fig. 33. The color and opacity val-
ues for each triangle vertex are approximated using ray integration
through the thickest point of the tetrahedron. The resulting semi-
transparent triangles are sorted in depth order and then rendered
and composited using polygonal graphics hardware. Stein et al.
[312] sort the cells before they are split into tetrahedra, and they
utilize 2D texture mapping hardware to accelerate opacity interpo-
lation and provide the correct per-pixel opacity values to avoid arti-
facts. While their method can only handle linear transfer functions
without artifacts, Röttger et al. [272] introduced the concept of pre-
integrated volume rendering to allow for arbitrary transfer func-
tions. They create a 3D texture map to provide hardware support in
interpolating along the ray between the front and back faces of a
tetrahedral cell. In this texture map, two of the three coordinates
correspond to values at the cell entry and exit points, with the third
coordinate mapping to the distance through the cell. This texture
map is then approximated using two-dimensional texture mapping. 

Cell projection methods require a sorted list of cells to be
passed to the hardware. Starting with Max et al.’s [202] and Will-
iams’s [355] works, there has been substantial progress in the
development of accurate visibility ordering algorithms [296][47].
A graphics hardware architecture was also proposed, but not yet
realized, by King et al. [152], which can both rasterize and sort tet-
rahedral meshes in hardware. 

An alternative technique to visualize irregular grids is by ray-
casting [91][330]. Ray-casting methods tend to be more exact than
projective techniques since they are able to “stab” or integrate the
cells in depth order, even in the presence of cycles. This is gener-
ally not possible in cell-by-cell projection methods. Many ray-cast-

cubic anisotropic rectilinear rectilinear

curvilinear unstructured

Figure 31:  Various grid types in 2D.

Figure 32:  Visualization of an irregular grid dataset: Simulated
flow around a submarine fairwater. (Image from Lawrence Liv-
ermore National Lab.)
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ing approaches employ the plane sweep paradigm, which is based
on processing geometric entities in an order determined by passing
a line or a plane over the data. It was pioneered by Giertsen [93] for
the use in volume rendering. It is based on a sweep plane that is
orthogonal to the viewing plane (e.g., orthogonal to the y-axis).
Events in the sweep are determined by vertices in the dataset and
by values of y that correspond to the pixel rows. When the sweep
plane passes over a vertex, an "Active Cell List" (ACL) is updated
accordingly, so that it stores the set of cells currently intersected by
the sweep plane. When the sweep plane reaches a y-value that
defines the next row of pixels, the current ACL is used to process
that row, casting rays, corresponding to the values of x that deter-
mine the pixels in the row, through a regular grid (hash table) that
stores the elements of the ACL. This method has three major
advantages: It is unnecessary to store explicitly the connectivity
between the cells; it replaces the relatively expensive operation of
3D ray-casting with a simpler 2D regular grid ray-casting; and it
exploits coherence of the data between scanlines. Since then, there
has been a number of works that employ the sweep paradigm, most
using a sweep plane that is parallel to the image plane. Some of
these methods are assisted by hardware [367][346], while others
are pure-software implementations [24][74][295]. The ZSweep
[74] algorithm is very fast and has excellent memory efficiency. It
sweeps the plane from front to back, and rasterizes the cell faces as
they are encountered by the sweep plane. This keeps the memory
footprint low since only the active cell set has be held in memory.
Finally, Hong and Kaufman [116][117] proposed a very fast ray-
casting technique, that exploits the special topology of cuvilinear
grids.

14  TIME-VARYING AND N-DIMENSIONAL DATA
A significant factor contributing to the growth in the size of

computational science datasets is the fact that the time steps in the
simulations have become increasingly finer in recent years. There
have been significant developments in the rendering of time-vary-
ing volumetric datasets. These typically exploit time-coherency for
compression and acceleration [3][102][190][289][317][345], but
other methods have also been designed that allow general viewing
[7][14][105][106][107][148][341] of high-dimensional (n-D)
datasets and require a more universal data decomposition.

In n-D viewing, the direct projection from n-D to 2D (for n>3)
is challenging. One major issue is that there are an infinite number
of orderings to determine occlusion (for n=3 there are just two, the
view from the front and the view from the back). In order to sim-

plify the user interface and to eliminate the amount of occlusion
explorations a user has to do, Bajaj et. al. [7] performed the n-D
volume renderings as an X-ray projection, where ordering is irrele-
vant. The authors demonstrated that, despite the lack of depth cues,
much useful topological information of the n-D space can be
revealed in this way. They also presented a scalable interactive user
interface that allows the user to change the viewpoint into n-D
space by stretching and rotating a system of n axis vectors.

On the other end of the spectrum are algorithms [14] (and the
earlier [341]) that first calculate an n-D hyper-surface (a tetrahedral
grid in 4D) for a specific iso-value, which can then be interactively
sliced along any arbitrary hyperplane to generate an opaque 3D
polygonal surface for hardware-accelerated view-dependent dis-
play. This approach is quite attractive as long as the iso-value is
kept constant. However, if the iso-value is modified, a new iso-tet-
rahedralization must be generated which can take on the order of
tens of minutes [14]. 

Since 4D datasets can become quite large, a variety of meth-
ods to compress 4D volumes were proposed in recent years.
Researchers used wavelets [101], DCT-encoding [190], RLE-
encoding [3], and images [288][289]. All are lossy to a certain
degree, depending on a set tolerance. An alternative compression
strategy is the use of more efficient sampling grids, such as the
BCC grids. Neophytou and Mueller [234] extended these grids for
4D volume rendering and use a 3D hyperslicer to extract 3D vol-
umes for shaded and semi-transparent volume visualization with
occlusion ordering. Slices along any axes can be obtained, see
Fig. 34.

Early work on 4D rendering includes a paper by Ke and Pan-
duranga [148] who used the hyperslice approach to provide views
onto the on-the-fly computed 4D Mandelbrot set. Another early
work is a paper by Rossignac [273], who gave a more theoretical
treatment of the options available for the rendering of 4D hyper-
solids generated, for example, by time-animated or colliding 3D
solids. Hanson et al. [105][106][107] wrote a series of papers that
use 4D lighting in conjunction with a technique that augments 4D
objects with renderable primitives to enable direct 4D renderings.
The images they provided in [106] are somewhat reminiscent to
objects rendered with motion blur. The 4D isosurface algorithms
proposed by Weigle and Banks [341] and Bhaniramka, Wenger,
and Crawfis [14] both use a Marching Cubes-type approach and
generalize it into n-D. 

Methods that focus more on the rendering of the time-variant
aspects of 3D datasets have stressed the issue of compression and
time-coherence to facilitate interactive rendering speeds. Shen and
Johnson [290] used difference encoding of time-variant volumes to

Class 1

Class 2

Class 3
Class 4

Figure 33:  The four classes in tetrahedral projection. 

Figure 34:  Time-varying datasets. Top left: turbulent vortex
field; Top right: turbulent jet; Botton: Turbulent jet sliced along
the time axis.  
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reduce storage and rendering time. Westermann [345] used a wave-
let decomposition to generate a multi-scale representation of the
volume. Shen, Chiang, and Ma [289] proposed the Time-Space
Partitioning (TSP) tree, which allows the renderer to cache and re-
use partial (node) images of volume portions static over a time
interval. It also enables the renderer to use data from sub-volumes
at different spatial and temporal resolutions. Anagnostou [3]
extended the RLE data encoding of the shear-warp algorithm [165]
into 4D, inserting a new run block into the data-structure whenever
a change is detected over time. They then composited the rendered
run block with partial rays of temporally-unchanged volume por-
tions. Sutton and Hansen [317] expanded the Branch-On-Need
Octree (BONO) approach of Wilhelms and Van Gelder [353] to
time-variant data to enable fast out-of-core rendering of time-vari-
ant isosurfaces. Lum, Ma, and Clyne [190] advocated an algorithm
that DCT-compresses time-runs of voxels into single scalars that
are stored in a texture map. These texture maps, one per volume
slice, are loaded into a texture-map accelerated graphics board.
Then, during time-animated rendering, the texture maps are
indexed by a time-varying color palette that relates the scalars in
the texture map to the current color of the voxel they represent.
Although the DCT affords only a lossy compression, their render-
ing results are quite good and can be produced interactively.
Another compression-based algorithm was proposed by Guthe and
Straßer [102], who used a lossy MPEG-like approach to encode the
time-variant data. The data were then decompressed on-the-fly for
display with texture mapping hardware.    

15  MULTI-CHANNEL AND MULTI-MODAL DATA
So far, we have assumed that a voxel had a scalar density

value from which other multi-variate properties could be derived,
for example, via transfer function lookup. We shall now extend this
notion to datasets where the voxel data come originally in form of
multi-variate vectors. In the context of this discussion, we shall
distinguish between vectors of physical quantities, such as flow
and strain, and vectors that store a list of voxel attributes. There is a
large body of literature to visualize the former, including line inte-
gral convolution [25], spot noise [351], streamlines and stream-

balls [23], glyphs, texture splats [52], and many more. In this
section, we shall focus on the latter scenario, that is, volumes com-
posed of attribute vectors. These can be (i) multi-channel, such as
the RGB color volumes obtained by cryosectioning the Visible
Human [122] or multi-spectra remote sensing satellite data, or (ii)
multi-modal, that is, volumes acquired by scanning an object with
multiple modalities, such as MRI, PET, and CT. 

The rendering of multi-modal volumes requires the mixing of
the data at some point in the rendering pipeline. There are at least
three locations at which this can happen [28]. For the following
discussion, let us assume a set of two co-located volumes, but this
is not a limitation. The simplest mixing technique is image-level
intermixing, i.e., to render each volume separately as a scalar
dataset and then blend the two images according to some weight-
ing function that possibly includes the z-buffer or opacity channel
(see Fig a). This method is attractive since it does not require a
modification of the volume renderer, but as Fig. 36a (top) shows, it
gives results of limited practical value since depth ordering is not
preserved. This can be fixed by intermixing the rendering results at
every step along the ray, which gives rise to accumulation level
intermixing. Here, we assign separate colors and opacities for each
volume’s ray sample, and then combine these according to some
mixing function (see Fig. 36a (bottom)). A third method is illumi-
nation model level intermixing, where one combines the ray sam-
ples before colors and opacities are computed. One could just use a
weighted sum of the two densities to look up opacities and colors,
or one could have one of the volumes act as an emission volume
and the other as an attenuation volume. This would work quite nat-
urally, for example, for the visualization of the emissive metabolic
activities in a SPECT volume within the spatial context of a CT
attenuation volume. Cai and Sakas [28] demonstrate this method in
the scenario of dose planning in radiation therapy, where they visu-
alize an (emissive) radiation beam embedded in an (attenuating)
CT volume.       

Multi-channel data, such as RGB data obtained by ways of
photographing slices of real volumetric objects, have the advantage
that there is no longer a need to search for suitable color transfer
functions to reproduce the original look of the data. On the other
hand, the photographic data do not provide an easy mapping to
densities and opacities, which are required to compute normals and
other parameters needed to bring out structural object detail in sur-
face-sensitive rendering. One can overcome the perceptional non-
linearities of the RGB space by computing gradients and higher
derivatives in the perceptionally uniform color space L*u*v* [65].
In this method, the RGB data are first converted into the L*u*v*
space, and the color distance between two voxels is calculated by
their Euclidian distance in that color space. A gradient can then be
calculated as usual via central differences, but replacing the voxel
densities by the color distances. Although one cannot determine
the direction of the normal vector with this method, this is not a
limiting factor in practice. One can also derive more descriptive
quantities, such as tensor gradients, since we are now dealing with
vectors and not with densities in the gradient calculation. These
can be used for segmentation, texture analysis, and others. Finally,
opacities can be computed by using different functions of higher-
level gradients to bring out different textural and structural aspects
of the data [223].   

16  NON-PHOTOREALISTIC VOLUME RENDERING
Non-photorealistic volume rendering (NPVR) is a relatively

recent branch of volume rendering. It employs local image pro-
cessing during the rendering to produce artistic and illustrative
effects, such as feature halos, tone shading, distance color blend-
ing, stylized motion blur, boundary enhancements, fading, silhou-
ettes, sketch lines, stipple patterns, and pen+ink drawings
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Figure 35:  Levels in the volume rendering pipeline at which
data mixing can occur.
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[66][67][186][187][129][189][188][313][327]. The overall goal of
NPVR is to go beyond the means of photo-realistic volume render-
ing and produce images that emphasize critical features in the data,
such as edges, boundaries, depth, and detail, to provide the user a
better appreciation of the structures in the data. This is similar to
the goals of medical and other illustrators, as well as related efforts
in general computer graphics [356][357][277][278]. Since the set
of parameters that can be tuned in NPVR is even larger than for
traditional volume rendering, interactive rendering of the NPVR
effects is crucial, and indeed a number or researchers have pro-
posed interactive implementations that exploit the latest genera-
tions of commodity programmable graphics hardware [188][313].

17  VOLUME GRAPHICS
Volume graphics [36][144] is an emerging subfield of volume

visualization and is concerned with the synthesis, modeling,
manipulation, and rendering of volumetric geometric objects,
stored in a volume buffer of voxels. Unlike the discussion so far,
which focuses mainly on sampled and computed datasets, volume
graphics is concerned primarily with modeled geometric scenes
and commonly with those that are represented in a regular volume
buffer. As an approach, volume graphics has the potential to
greatly advance the field of 3D graphics by offering a comprehen-
sive alternative to traditional surface graphics.

Although the 3D raster representation seems to be more natu-
ral for empirical imagery than for geometric objects, due to its abil-
ity to represent interiors and digital samples, nonetheless, the
advantages of this representation are also attracting traditional sur-
face-based applications that deal with the modeling and rendering
of synthetic scenes made out of geometric models. The geometric
model is voxelized (3D scan-converted) into a set of voxels that

``best'' approximate the model. Each of these voxels is then stored
in the volume buffer together with the voxel pre-computed view-
independent attributes. The voxelized model can be either binary
(see [73][125][139][140][146]) or volume sampled
[55][81][308][335]) which generates alias-free density voxeliza-
tion of the model. Some surface-based application examples are
the rendering of fractals [244], hyper textures [256], fur [135], foli-
age, grass, and hair [236], gases [68], clouds [58][201], and other
complex models [300], including CAD models and terrain models
for flight simulators [45][98][144][267][334][363]. Furthermore,
in many applications involving sampled data, such as medial imag-
ing, the data need to be visualized along with synthetic objects that
may not be available in digital form, such as scalpels, prosthetic
devices, injection needles, radiation beams, and isodose surfaces.
These geometric objects can be voxelized and intermixed with the
sampled organ in the voxel buffer [145]. An alternative is to leave
these geometric objects in a polygonal representation and render
the assembly of volumetric and polygonal data in a hybrid render-
ing mode [162][176][302].  

In the next sub-sections we describe the volumetric approach
to several common volume graphics modeling techniques. We
describe the generation of object primitives from geometric models
(voxelization) and images (reconstruction), 3D antialiasing, solid-
texturing, modeling of amorphous and natural phenomena, model-
ing by block operations, constructive solid modeling, volume
sculpting, volume deformation, and volume animation. 

(a)

(b)

(c)

Figure 36:  Multi-modal rendering with data intermixing: 
(a) One time step of a time-varying volume (magenta) and vol-
ume motion-blurred across 10 time steps (blue). (top): image-
level intermixing, (bottom): accumulation-level intermixing
[234].
(b) Accumulation-level intermixing of the Visible Man’s CT
and a MRI dataset. Here we assign blue of CT>MRI and green
if MRI>CT. (left): gradients specified on CT while MRI is ren-
dered as a point cloud; (right): surfaces rendered with gradient
modulation [98].
(c) Accumulation-level intermixing of the Visible Man’s CT
and a MRI dataset, rendered in inclusive opacity mode,
i.e., . (left) unweighted product
of CT and MRI, (right) more CT than MRI [98].

α 1 1 αCT–( ) 1 αMRI–( )–=

Figure 37:  Rendering of multi-channel (photographic) data.
(a) The L* component (related to brightness); (b) The u* com-
ponent (related to the chromatic change in red-green colors);
(c) Color difference gradient computed in RGB color space;
(b) Gradients computed in L*u*v* space, using the second
derivative along the gradient direction to compute opacity.
(Images from [98]).
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17.1  Voxelization
An indispensable stage in volume graphics is the synthesis of

voxel-represented objects from their geometric representation.
This stage, which is called voxelization, is concerned with convert-
ing geometric objects from their continuous geometric representa-
tion into a set of voxels that “best” approximates the continuous
object. As this process mimics the scan-conversion process that
pixelizes (rasterizes) 2D geometric objects, it is also referred to as
3D scan-conversion. In 2D rasterization the pixels are directly
drawn onto the screen to be visualized and filtering is applied to
reduce the aliasing artifacts. However, the voxelization process
does not render the voxels but merely generates a database of the
discrete digitization of the continuous object.

A voxelization algorithm for any geometric object should
meet several criteria. First, it must be efficient and accurate and it
must generate discrete surfaces that are thick enough such they
cannot be penetrated by a crossing line (separability criterion)
[43]. Second, the discrete surfaces should only contain those vox-
els indispensable to satisfy the separability requirement, such that a
faithful delineation of the object’s shape is warranted (minimality
criterion) [43]. Third, the generated discrete object should have
smooth boundaries to ensure the anti-aliased gradient estimation
necessary for high-quality volume rendering (smoothness crite-
rion) [335]. 

One practical meaning of separation is apparent when a vox-
elized scene is rendered by casting discrete rays from the image
plane into the scene. The penetration of the background voxels
(which simulate the discrete ray traversal) through the voxelized
surface causes the appearance of a hole in the final image of the
rendered surface. Another type of error might occur when a 3D
flooding algorithm is employed either to fill an object or to mea-
sure its volume, surface area, or other properties. In this case the
nonseparability of the surface causes a leakage of the flood through
the discrete surface. Unfortunately, the extension of the 2D defini-
tion of separation to the third dimension and to voxel surfaces is
not straightforward since voxelized surfaces cannot be defined as
an ordered sequence of voxels and a voxel on the surface does not
have a specific number of adjacent surface voxels. Furthermore,
there are important topological issues, such as the separation of
both sides of a surface, which cannot be well-defined by employ-
ing 2D terminology. The theory that deals with these topological
issues is called 3D discrete topology. We sketch below some basic
notions and informal definitions used in this field.

17.2  Fundamentals of 3D Discrete Topology
The 3D discrete space is a set of integral grid points in 3D

Euclidean space defined by their Cartesian coordinates (x, y, z). A
voxel is the unit cubic volume centered at the integral grid point.
The voxel value is mapped onto {0,1}: the voxels assigned “1” are
called the “black” voxels representing opaque objects, and those
assigned “0” are the “white” voxels representing the transparent
background. Besides this binary representation, there are also non-
binary approaches where the voxel value is mapped onto the inter-
val [0,1] representing either partial coverage, variable densities, or
graded opacities. Due to its larger dynamic range of values, this
approach supports 3D antialiasing and thus supports higher quality
rendering.

Two voxels are 26-adjacent if they share either a vertex, an
edge, or a face. Every voxel has 26 such adjacent voxels: eight
share a vertex (corner) with the center voxel, twelve share an edge,
and six share a face. Accordingly, face-sharing voxels are defined
as 6-adjacent, and edge-sharing and face-sharing voxels are
defined as 18-adjacent. In the following, we shall use the prefix N
to define the adjacency relation, where N = 6, 18, or 26. A
sequence of voxels having the same value (e.g., “black”) is called
an N-path if all consecutive pairs are N-adjacent. A set of voxels W

is N-connected if there is an N-path between every pair of voxels in
W. An N-connected component is a maximal N-connected set.

Given a 2D discrete 8-connected black curve, there are
sequences of 8-connected white pixels (8-component) that pass
from one side of the black component to its other side without
intersecting it. This phenomenon is a discrete disagreement with
the continuous case where there is no way of penetrating a closed
curve without intersecting it. To avoid such a scenario, it has been
the convention to define “opposite” types of connectivity for the
white and black sets. “Opposite” types in 2D space are 4 and 8,
while in 3D space 6 is “opposite” to 26 or to 18.

Assume that a voxel space, denoted by Σ, includes one subset
of “black” voxels S. If Σ - S is not N-connected, that is, Σ - S con-
sists of at least two white N-connected components, then S is said
to be N-separating in Σ. Loosely speaking, in 2D, an 8-connected
black path that divides the white pixels into two groups is 4-sepa-
rating and a 4-connected black path that divides the white pixels
into two groups is 8-separating.

There are no analogous results in 3D space. Let W be an N-
separating surface. A voxel p ∈ W is said to be an N-simple voxel
if W - p is still N-separating. An N-separating surface is called N-
minimal if it does not contain any N-simple voxel. A cover of a
continuous surface is a set of voxels such that every point of the
continuous surface lies in a voxel of the cover. A cover is said to be
a minimal cover if none of its subsets is also a cover. The cover
property is essential in applications that employ space subdivision
for fast ray tracing [94]. The subspaces (voxels) which contain
objects have to be identified along the traced ray. Note that a cover
is not necessarily separating, while on the other hand, as mentioned
above, it may include simple voxels. In fact, even a minimal cover
is not necessarily N-minimal for any N [43].

17.3  Binary Voxelization
An early technique for the digitization of solids was spatial

enumeration which employs point or cell classification methods in
either an exhaustive fashion or by recursive subdivision [171].
However, subdivision techniques for model decomposition into
rectangular subspaces are computationally expensive and thus
inappropriate for medium or high resolution grids. Instead, objects
should be directly voxelized, preferably generating an N-separat-
ing, N-minimal, and covering set, where N is application depen-
dent. The voxelization algorithms should follow the same
paradigm as the 2D scan-conversion algorithms; they should be
incremental, accurate, use simple arithmetic (preferably integer
only), and have a complexity that is not more than linear with the
number of voxels generated.

The literature of 3D scan-conversion is relatively small.
Danielsson [56] and Mokrzycki [215] developed independently
similar 3D curve algorithms where the curve is defined by the
intersection of two implicit surfaces. Voxelization algorithms have
been developed for 3D lines, 3D circles, and a variety of surfaces
and solids, including polygons, polyhedra, and quadric objects
[146]. Efficient algorithms have been developed for voxelizing
polygons using an integer-based decision mechanism embedded
within a scan-line filling algorithm [139], for parametric curves,
surfaces, and volumes using an integer-based forward differencing
technique [140], and for quadric objects such as cylinders, spheres,
and cones using “weaving” algorithms by which a discrete circle/
line sweeps along a discrete circle/line [46]. While these pioneer-
ing attempts focused more on efficiency and accuracy, later algo-
rithms focused also on the adherence to the topological
requirements (that is, the separability and minimality criteria).
Huang et al. [125] devised such an algorithm for the voxelization
of polygon meshes, employing a geometric measure for each can-
didate voxel to determine its N-simplicity.
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17.4  Anti-aliased Voxelization
The previous sub-section discussed
binary voxelization, which gener-
ates topologically and geometrically
consistent models, but exhibits
object space aliasing, caused by the
binary classification of voxels into
the {0,1} set. Therefore, the resolu-
tion of the 3D raster ultimately deter-
mines the precision of the discrete
model, and imprecise modeling
results in jagged surfaces, known as
object space aliasing, and leads to
image space aliasing during the ren-
dering (see Fig. 38). To avoid the
aliasing one must employ object-

space pre-filtering, in which scalar-valued voxels are used to repre-
sent the percentage of spatial occupancy of a voxel [336], an exten-
sion of the two-dimensional line anti-aliasing method of Gupta and
Sproull [103]. The scalar-valued voxels determine a fuzzy set such
that the boundary between inclusion and exclusion is smooth.
Direct visualization from such a fuzzy set avoids image aliasing. A
number of researches on voxelization as well as de-binarization of
sampled volume datasets has focused on generating a distance vol-
ume for subsequent use in manipulation [22] or rendering [81]. The
latter also employed an elastic surface wrap, called surface nets, to
enable the generation of smoother distance fields. By means of the
distance volume one can then estimate smooth gradients and
achieve pleasing renderings without jagged surfaces. Sramek and
Kaufman [308][309] showed that the optimal sampling filter for
central difference gradient estimation in areas of low curvature is a
one-dimensional box filter of width  voxel units, oriented per-
pendicular to the surface. Since most volume rendering implemen-
tations utilize the central difference gradient estimation filter and
trilinear sample interpolation, the oriented box filter is well suited
for voxelization. Furthermore, this filter is an easily computed lin-
ear function of the distance from the triangle. Binary parametric
surfaces and curves can be anti-aliased by using a (slower) 3D
splatting technique. 

Later methods have focused on providing more efficient algo-
rithms for anti-aliased triangle voxelization, suitable for both soft-
ware [55][133] and hardware implementations [55][73]. Since
conventional graphics hardware only rasterizes points, lines, and
triangles, higher order primitives must be expressed as combina-
tions of these basic primitives, most often as triangles. To voxelize
solid objects, one can first voxelize the boundary as a set of trian-
gles, then fill the interior using a volumetric filling procedure. A
commodity hardware-based voxelization algorithm was proposed
by Fang and Chen [73], which performs the voxelization on a per-
volume sheet basis by slicing the poly-mesh (with anti-aliasing
turned on) and storing the result in a 3D (volumetric) texture map. 

Dachille and Kaufman [55] devised a more accurate software
method (in terms of the anti-aliasing), that employs fast incremen-
tal arithmetic for rapid voxelization of poly-meshes on a per-trian-
gle-basis. Fig. 39 depicts the boundary region which is affected by
the anti-aliased voxelization of a triangle, and the boundary profile
of its voxelization. All voxels within the translucent surface, which
is at a constant distance from the triangle, must be updated during
the voxelization and assigned values corresponding to the distance
to the triangle surface. The general idea of the algorithm is to vox-

elize a triangle by scanning a bounding box of the triangle in raster
order. For each voxel in the bounding box, a filter equation (similar
to that of [308]) is evaluated and the result is stored in memory.
The value of the equation is a linear function of the distance from
the triangle. The result is stored using a fuzzy algebraic union oper-
ator—the max operator. A similar algorithms was also imple-
mented on the VolumePro volume rendering board [55].       

17.5  Block Operations and Constructive Solid Modeling
An intrinsic characteristic of the volume buffer is that adja-

cent objects in the scene are also represented by neighboring mem-
ory cells. Therefore, rasters lend themselves to various meaningful
grouping-based operations, such as bitblt in 2D, or voxblt in 3D
[141]. These include transfer of volume buffer rectangular blocks
(cuboids) while supporting voxel-by-voxel operations between
source and destination blocks. Block operations add a variety of
modeling capabilities which aid in the task of image synthesis and
form the basis for the efficient implementation of a 3D “room man-
ager”, which is the extension of window management to the third
dimension.

Constructive solid geometry (CSG) is one of the most impor-
tant modeling methods in computer graphics and computer aided
design (CAD). It allows complicated objects to be built as various

Figure 38:  Binary sphere
yields jagged surfaces
when rendered.
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Figure 39:  (a) The 3D region of influence around a triangle, (b)
the density profile of the oriented box filter along a line perpen-
dicular to the triangle surface primitive. Here, T is the width of
the triangle (usually very close to 0) and W is the width of the
filter profile. The anti-aliased voxelization will maintain this
profile everywhere within the red region of the triangle shown in
(a). It is assumed that the iso-surface is positioned at a density
value of 0.5, in the center of the profile. This ensures that the
central difference operator meets a smooth boundary.  

(a)

(b)

Figure 40:  Voxelized objects with anti-aliased boundaries. 
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ordered “union”, “intersection” and “difference” of simpler
objects, which may be bounded primitives or half-spaces. It is sup-
ported by the Boolean algebra and a set of well-understood regu-
larized set operations. Since the volume buffer lends itself to
Boolean operations that can be performed on a voxel-by-voxel
basis during the voxelization stage, it is advantageous to use CSG
as the modeling paradigm with volumetric objects. Subtraction,
union, and intersection operations between two discretized 3D
objects are accomplished at the voxel level, thereby reducing the
original problem of evaluating a CSG tree during rendering time
down to a 1D Boolean operation between pairs of voxels during a
preprocessing stage. 

At the same time, the volume buffer also allows a major
extension of the traditional CSG paradigm, since it can also be
employed to manipulate physical properties that are associated
with objects, for example scalar or even vector and tensor fields. In
Constructive Volume Geometry (CVG) [35], the combinational
operations, mostly defined in the real domain, can subsequently be
used to model complex interior structures of objects and amor-
phous phenomena in a constructive manner, with a generalization
of the well known CSG operators.

In CVG, combinational operators are defined upon unbounded
spatial objects, and are constructed from simple arithmetic opera-
tions on scalars through a series of operational decomposition. The
operations on scalars are normally defined in the real domain. The
basic CVG operators include union, intersection, difference, and
blending. With the flexibility and accuracy of the real domain,
complex operators, such as those for data filtering and volume
deformation, can easily be specified. CVG operates on the interior
as well as the exterior of objects, and therefore preserves the main
geometrical properties in volumetric datasets such as volume den-
sity and multiple iso-surfaces. Physical properties such as colors
are defined and manipulated in the same way as geometry. CVG
accommodates objects that are defined mathematically by scalar
fields as well as those built from digitized volumetric datasets. 

For two point-sampled binary objects the Boolean operations
of CSG or voxblt are trivially defined. However, the Boolean oper-
ations applied to volume-sampled models are analogous to those of
fuzzy set theory (see [62]). The volume-sampled model is a density
function d(x) over R3, where d is 1 inside the object, 0 outside the
object, and 0 < d < 1 within the “soft” region of the filtered sur-
face. Some of the common operations, intersection, complement,
difference, and union, between two objects A and B are defined as
follows:

(17)

Examples of these operations are illustrated in Fig. 41, using indi-
vidual transfer functions for each object to map volume density to
color and a linear function to map density to opacity. Complex geo-
metric models can also be generated by performing the CVG oper-
ations in Equation (17) between sampled volumes, as obtained
with 3D scanners. Volume-sampled models can also function as
matte volumes [61] for various matting operations, such as for per-
forming cut-aways and merging multiple volumes into a single vol-
ume using the union operation. 

The only law of set theory that is no longer true is the
excluded-middle law (i.e., ).  and .
The use of the min and max functions causes discontinuity at the
region where the soft regions of the two objects meet, since the
density value at each location in the region is determined solely by

one of the two overlapping objects. In order to preserve continuity
on the cut-away boundaries between the material and the empty
space, one could use an alternative set of Boolean operators based
on algebraic sum and algebraic product [62][256]:

(18)

Unlike the min and max operators, algebraic sum and product oper-
ators result in  which is undesirable. A consequence,
for example, is that during modeling via sweeping, the resulting
model is sensitive to the sampling rate of the swept path [336].

Once a CVG model has been constructed in voxel representa-
tion, it is rendered in the same way any other volume buffer is.
This makes, for example, volumetric ray tracing [302] or splatting
[221][286] of constructive solid models straightforward. Texture-
mapping hardware-assisted rendering approaches will further pro-
mote the interactive modeling via CVG. Moreover, it is interesting
to observe that the volume compositions generated via CVG and
those constructed with the multi-modal/multi-valued datasets dis-
cussed earlier share a number of rendering challenges that will
make a common rendering, compositing, and modeling frame-
work, most suitably using a volumetric scenegraph [233][358],
attractive.

17.6  Texture Mapping and Solid Texturing
One type of object complexity involves objects that are

enhanced with texture mapping, photo-mapping, environment
mapping, or solid texturing. Texture mapping is commonly imple-
mented during the last stage of the rendering pipeline, and its com-
plexity is proportional to the object complexity. In volume
graphics, however, texture mapping is performed during the voxel-
ization stage, and the texture color is stored in each voxel in the
volume buffer.

In photo mapping six orthogonal photographs of the real
object are projected back onto the voxelized object. Once this map-
ping is applied, it is stored with the voxels themselves during the
voxelization stage, and therefore does not degrade the rendering
performance. Texture and photo mapping are also viewpoint inde-
pendent attributes implying that once the texture is stored as part of
the voxel value, texture mapping need not be repeated. This impor-
tant feature is exploited, for example, by voxel-based flight simula-
tors (see Fig. 42) and in CAD systems.

A central feature of volumetric representation is that, unlike
surface representation, it is capable of representing inner structures
of objects, which can be revealed and explored with appropriate

dA B∩ min dA x( ) dB x( ),( )=

dA 1 dA x( )–=

dA B– min dA x( ) 1 d– B x( ),( )=

dA B∪ max dA x( ) dB x( ),( )=

A A ∅ ≠∩ A A Universe≠∪

Figure 41:  The effect of applying combinational operations to
the interior of volumetric CVG objects (from Chen]). From left
to right, they are cylinder c, (fuzzy) sphere s, union(c,s), inter-
section(c,s), blend(c,s), diff(c,s), and diff(c,s). The geometry
(i.e., opacity) and color of both cylinder and sphere are specified
using simple scalar fields. For instance, the opacity field of the
sphere is defined as (1-r) where r is the radius. Only the iso-sur-
face at d=0.1 of each object is rendered. Each object is also sub-
tracted by an additional spatial object to reveal its internal
structure. (Images taken from [35].)

dA B∩ dA x( )dB x( )=
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A A A ≠∪
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manipulation and rendering techniques. This capability is essential
for the exploration of sampled or computed objects. Synthetic
objects are also likely to be solid rather than hollow. One method
for modeling various solid types is solid texturing, in which a pro-
cedural function or a 3D map models the color of the objects in 3D.
During the voxelization phase each voxel belonging to the objects
is assigned a value by the texturing function or the 3D map. This
value is then stored as part of the voxel information. On the other
hand, if solid texturing is be used as a means to enrich a volume
dataset with more detail, without increasing the stored resolution of
the dataset, then the texturing function can also be evaluated during
rendering time, at the ray sampling locations. 

We shall now review some of the most important solid textur-
ing basis functions: noise, turbulence, and n-th closest, and then
describe their use in the context of volume graphics [281]. 

Noise. Perlin’s noise function [255] returns a pseudo-random
value, in the range of (-1,1), by interpolating gradient vector
between predetermined lattice points. There are numerous imple-
mentations of the noise algorithms [178], which all exhibit the fol-
lowing properties: (i) statistical invariance under rotation, (ii) a
narrow bandpass limit in frequency, and (iii) statistical invariance
under translation. The latter property makes solid textured objects
appear as being “carved out” of the simulated material. Fig. 43, top
row, shows the CT head rendered with a variety of solid textures
created with the noise function.

Turbulence. The “turbulence” basis function gives the
impression of Brownian motion (or turbulent flow) by summing
noise values at decreasing frequencies, introducing a self-similar 1/
f pattern, where f is the frequency of the noise. The discontinuities
of turbulent flow are introduced into the model with the use of the
mathematical function abs, which reflects the gradient vectors used
by noise. Fig. 43, bottom row, shows the CT head rendered with
solid textures created from the turbulence function.

N-th Closest. A third basis function, introduced by Worley
and Hart [362], places “feature points” at random locations in R3.
The “nth closest” basis function calculates the distance from a sur-
face point to each of the n closest feature points. Combinations of
these distances can then be used to index a color spline, adding a
flagstone style texture to the surface of the object.

17.7  Amorphous Phenomena
Solid texturing produces objects that have “simple” surface

definitions. However many objects, such as fur, have surface defi-
nitions that are at best complex. Moreover, others, such as clouds,
fire and smoke, have no well defined surface at all. While translu-
cent objects can be represented by surface methods, these methods

cannot efficiently support the modeling and rendering of these
amorphous phenomena, which are volumetric in nature and lack
any tangible surfaces. A common modeling and rendering
approach is based on a function that, for any input point in 3D, cal-
culates some object features such as density, reflectivity, or color.
These functions can then be rendered by ray casting, which casts a
ray from each pixel into the function domain. Along the passage of
the ray, at constant intervals the function is evaluated to yield a
sample. All samples along each ray are combined to form the pixel
color. 

Perlin and Hoffert [256] introduced a technique, called hyper-
textures, that allows for the production of such complex textures,
through the manipulation of surface densities. That is, rather than
just coloring an object's surface with a texture map, its surface
structure is changed (during rendering) using a three dimensional
texture function. Hypertextures introduce the idea of “soft
objects”, objects with a large boundary region, modeled using an
“object density function”, D(x), thus giving three possible states to
a point:  
• Inside: the point is inside the object.
• Outside: the point is outside of the object.
• Boundary: the point is in the boundary, called the “soft”, region

of the object.
As with solid textures, combinations of noise and turbulence

together with two new density modulation functions and bias (con-
trols the density variation across the soft region) and gain (controls
the rate at which density changes across the midrange of the soft
region) are used to manipulate D(x) to create hypertextured
objects. Fig. 44, top row, shows examples of hypertextured objects,
illustrating the pleasing effects that can be produced when the
hypertexture approach is applied to geometrically definable
datasets. Satherley and Jones [281] showed that non-geometric
datasets, such as volumes, can be augmented with hypertextures by
first performing a distance transform on them and then applying
the hypertexture framework on the resulting distance volume,
within the soft region of the object. Fig. 44, bottom row, shows the
results when such operations are performed on the CT head
dataset.

The modeling of amorphous detail via volumetric techniques
has found a number of applications, including the texel approach
introduced by Kajiya and Kay [135] for the rendering of fur, which
was later extended by Neyret [236] for the rendering of foliage,
grass, and hair. Other researchers have used volumetric representa-

Figure 42:  A satellite image, photo-mapped onto voxelized ter-
rain.

Figure 43:  Solid textured CT head dataset. Top row: solid textures
created using the “Noise” basis function. Bottom row: solid tex-
tures created using the “Turbulence” basis function. (Images
taken from [281].)
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tions to model and render fractals [109], gases [68][76], and clouds
[58][156][201]. 

Instead of using procedural functions based on noise func-
tions, better renditions of physical, time-varying behavior can be
obtained by modeling the actual underlying physical processes,
such as smoke, fire, and water flow, via application of the Navier
Stokes equations [77][237][310] or lattice propagation methods
[108][338]. Although this requires much larger computational
effort, recent advances in graphics hardware have yielded powerful
SIMD processors that can be employed to run the required numeri-
cal solvers or lattice calculations at speedups of an order of magni-
tude or more, when compared to traditional CPUs. For reasons of
efficiency, the flow calculations are often performed on relatively
coarse grids. Therefore, global illumination algorithms, such as
photon maps [132], Monte Carlo volume renderers, or splats which
are texture mapped with phenomena detail [153][338] are often
used to visually enhance the level of detail for visualization.

17.8  Natural phenomena
Natural phenomena, such as the processes of thawing, natural

weathering, or melting, are also inherently volumetric processes
and are suitably modeled with volume graphics methods. Fuijishiro
and Aoki [85] have used a mathematical morphology operator to
simulate the effects of thawing. Here, the volume model is thought
of being made of ice and is left in the open (warm) air to thaw. The
mathematical morphology operator is a phenomenological model-
ling operator and is shown in their work to provide a good approx-
imation of the physical model. Further, to simulate the relegation
of water on the base of volumetric ice statues, a cellular automata
mechanism is employed. Dorsey et al. [60] model the weathering
of stone by employing a simulation of the flow of moisture through
the surface into the stone. Here, the model governs the erosion of
material from the surface and the weathering process is confined to
a thick crust on the surface of the volume. Ozawa and Fujishiro
[249] use the mathematical morphology technique also for the
weathering of stone. By applying a spatially variant structuring ele-
ment for the morphology, they are able to simulate the stochastic
nature of real weathering phenomena. Other researchers have used
physically-based methods, i.e., Navier-Stokes solvers [29] or
advanced cellular automata methods (Lattice-Boltzmann)
[339][340] to simulate the process of melting and flowing of vis-
cous materials, as well as sand, mud and snow [316].

Varadhan and Mueller [331] proposed a physically-based
method for the simulation of ablation on volumetric models. They
demonstrate the visual effect of ablative processes, such as a beam

of heat emitted from a blow torch or a pencil of sand expelled from
a sandblaster. Users are able to control ablative properties, such as
energy propagation, absorption, and material evaporation, via a
simple transfer function interface, while the effect of different
beam shapes can be modeled by ways of weighting functions.
Since continuous evaporation of material to expose interior object
features can eliminate smooth object boundary layers required for
good gradient estimation, their method leaves the original volume
intact and instead operates on a smooth energy volume. The ren-
derer then uses the energy volume to determine the current, smooth
object boundaries, for the opacity and gradient calculations, while
the original volume provides the visual material properties, such as
color and shading coefficients. Fig. 45 shows a foot objected to a
thin laser penetrating the flesh but stopping at the bone.

17.9  Volume Sculpting
Surface-based sculpting has been studied extensively (e.g.,

[49][283]), while volume sculpting has been later introduced for
clay or wax-like sculptures [126] and for comprehensive detailed
sculpting [337]. The latter approach is a free-form interactive mod-
eling technique based on the metaphor of sculpting and painting a
voxel-based solid material, such as a block of marble or wood.
There are two motivations for this approach. First, modeling topo-
logically complex and highly-detailed objects are still difficult in
most CAD systems. Second, sculpting has shown to be useful in
volumetric applications. For example, scientists and physicians
often need to explore the inner structures of their simulated or sam-
pled datasets by gradually removing material.

Real-time human interaction
could be achieved in this
approach, since the actions of
sculpting (e.g., carving, sawing)
and painting are localized in the
volume buffer, a localized ren-
dering can be employed to
reproject only those pixels that
are affected. Carving is the pro-
cess of taking a pre-existing vol-
ume-sampled tool to chip or
chisel the object bit by bit. Since
both the object and the tool are
represented as independent vol-
ume buffers, the process of
sculpting involves positioning
the tool with respect to the object
and performing a Boolean sub-

traction between the two volumes. Sawing is the process of remov-
ing a whole chunk of material at once, much like a carpenter
sawing off a portion of a wood piece. Unlike carving, sawing
requires generating the volume-sampled tool on-the-fly, using a
user interface. To prevent object space aliasing and to achieve
interactive speed, 3D splatting is employed. 

An important issue in digital sculpting is the datastructure
used to represent the sculpted object during and after the sculpting
process. While earlier systems employed flat 3D arrays, multi-res-

Figure 44:  Hypertextured sphere (top row) and CT head dataset
(bottom row). Left column: noise; Center column: fire; Right
column: fur. (Images taken from [281].) 

Figure 45:  A foot objected to a thin laser penetrating and burn-
ing the flesh, but stopping at the bone.

Figure 46:  Volume-sculpted
bust.(Image from [6])
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olution datastructures, such as octrees, are better suited to capture
high level of detail where needed and at the same time keep the
memory requirements low in large homogenous regions.
Bærentzen [6] suggested the use of octrees with dynamic resolu-
tion, where nodes are inserted at different levels in the octree.
Hence, there is no longer a predefined leaf level since leaf nodes
may be inserted at any level. This has two important implications:
(i) non–empty homogenous regions may be grouped together and
represented by a voxel at a lower level of subdivision, thereby stor-
ing the volume more efficiently, and (ii) fine details may be added
at a high level of subdivision, whenever they are needed to capture
the local detail of the sculpted object. Fig. 46 shows an object
sculpted with the system’s additive spray and subtractive CSG
tools. A related datastructure was introduced by Frisken et al. [82]
who extended the work on distance volumes (see voxelization sec-
tion) to adaptively sampled distance fields (ADFs) for use as a fun-
damental graphical data structure. A distance field is a scalar field
that specifies the minimum distance to a shape, where the distance
may be signed to distinguish between the inside and outside of the
shape. In ADFs, distance fields are adoptively sampled according
to local detail and stored in a spatial hierarchy for efficient process-
ing. They subsequently used an improved version of ADFs as a
datastructure within the Kizamu sculpting system [257], targeted to
design digital characters for the entertainment industry.   

17.10  Volume Deformation and Animation
Most of the research in volume
deformation involves applying a
transformation to every voxel in
the object (free-form deforma-
tion) or defining a physical
model for the full object (physi-
cally-based deformation). The
computations can include
spring-like models, continuum
models [80], finite element
methods [37] or landmark defor-
mations [71]. Gibson and Mir-
tich [80] have presented a
survey of work done in model-
ing deformable objects. Physi-
cally-based animation is used

for realistic modeling of collision and deformation. In [37], a sys-
tem is presented using a volumetric mass spring model and an
FEM model for animating volume objects. In [79], a 3D Chain
Mail algorithm is used to propagate deformation through a volume
rapidly. In [164], volumes are indirectly deformed by deforming
the rendering rays (see Fig. 47). In [131], a method was presented
to compute 3D model deformation in hardware with pre-computed
modal vibrations. The method does not directly deform volumetric
objects (the volumes are used for the pre-computation). Another
form of volume animation is targeted deformation, or volume mor-
phing [72][111][127][172]. Hardware accelerated volume defor-
mation algorithms are presented in [270][343]. The volumetric
data is first preprocessed to extract an isosurface. The isosurface is
then sliced parallel to the viewing direction and these slices are
composited using hardware support (the isosurfacing and slicing is
done in software). The advantage of using this system is that the
isosurface coordinates can be deformed (for example, by “pulling”
a vertex) and the resulting image will look like a warped volume.
In [87], a volume animation system has been presented which
allows an animator to specify an animation for a volume in the
same way that they would specify an animation for a polygonal
model. A volumetric skeleton is computed directly from the vol-
ume using the distance transform. The skeleton can then be
deformed using a standard animation package. A volume is recon-

structed about the skeleton using the distance field. This method
was used to create realistic animations of the Visible Human
Dataset [122]. In [88], a method was also presented to animate the
Visible Human Dataset. This method subdivided the volume by
hand into logical blocks. Each block could be transformed and the
volume copied into the new location. Finally, in [299] a follow-up
system is presented that renders these blocks via 3D texture-map-
ping hardware and composites the resulting images in back-to-
front order. Gaps that may develop between displaced blocks, for
example at bending knee joints, are filled by interpolating addi-
tional boxes in these areas, along the midplane of the crack [27].
The hardware acceleration enables near-interactive volume defor-
mation and a sequence of images obtained with their system is
shown in Fig. 48.

18  CONCLUSIONS
Many of the important concepts and computational methods

of volume visualization have been presented. Surface rendering
algorithms for volume data were briefly described in which an
intermediate representation of the data is used to generate an image
of a surface contained within the data. Object order, image order,
domain-based, and hardware-based rendering techniques were pre-
sented for generating images of surfaces within the data, as well as
volume rendered images that attempt to capture in the 2D image all
3D embedded information, possibly in non-photorealistically
enhanced form, and thus enable a comprehensive exploration of
the volumetric datasets. Several optimization techniques that aim
at decreasing the rendering time for volume visualization as well as
realistic global illumination rendering were also described. 

Although volumetric representations and visualization tech-
niques seem more natural for sampled or computed data sets, their
advantages are also attracting traditional geometric-based applica-
tions. This trend implies an expanding role for volume visualiza-
tion, and it has thus the potential to revolutionize the field of
computer graphics as a whole, by providing an alternative to sur-
face graphics, called volume graphics. The recently emerging
interactive volume rendering capabilities on GPUs will only accel-
erate this trend. 
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	Figure 11: Pre-classified (left column) vs. post-classified rendering (right column). The latter yields sharper images since the...
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	Figure 16: The shear-warp algorithm. (a) mechanism, (b) interpolation scheme.
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	Figure 18: The cartesian grid (left) vs. the hexagonal grid (right) as two possible frequency domain lattices. The latter provid...
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	Figure 20: Foot dataset rendered on: (left) Cubic Cartesian (CC) grid, (right) Body Centered (BCC) grid. The renderings are almost identical, but the BCC rendering took 70% of the time of the CC rendering.
	Figure 21: (a) The volume is decomposed into slabs, and each slab is rendered into an image from view direction Va. The ray inte...
	Figure 22: IBR-assisted volume rendering: (a) on-the-fly computed mesh derived from the slab’s closest-voxel buffer, (b) head rendered from original view point, (c) head rendered from a view 30˚ away.
	Figure 23: A transfer function editor with a HSV color palette and mapping of densities to various material properties.
	Figure 24: Histogram and a fuzzy classification into different materials.
	Figure 25: The relationship of densities and their first and second derivatives at an object boundary (shown as the box in the picture on the right).
	Figure 26: Histograms of (a) first and (b) second derivative strengths over density. In the concentric ring image (top row), the...
	Figure 27: Gradient strength-dependent density range for iso- surface opacities [174].
	Figure 28: Simple contour graph. The first topological event occurs when the two inner contours are born at an iso-value of 10. ...
	Figure 29: Feature management with contour graphs. Once the features are detected they can be isolated and be given private visu...
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	Figure 30: Engine block rendered without (left) and with (right) global illumination. We observe that only the multiply scattered light is able to illuminate the hollow spots.
	Figure 31: Various grid types in 2D.
	Figure 32: Visualization of an irregular grid dataset: Simulated flow around a submarine fairwater. (Image from Lawrence Livermore National Lab.)
	Figure 33: The four classes in tetrahedral projection.
	Figure 34: Time-varying datasets. Top left: turbulent vortex field; Top right: turbulent jet; Botton: Turbulent jet sliced along the time axis.
	Figure 35: Levels in the volume rendering pipeline at which data mixing can occur.
	Figure 36: Multi-modal rendering with data intermixing:
	Figure 37: Rendering of multi-channel (photographic) data. (a) The L* component (related to brightness); (b) The u* component (r...
	Figure 38: Binary sphere yields jagged surfaces when rendered.
	Figure 39: (a) The 3D region of influence around a triangle, (b) the density profile of the oriented box filter along a line per...
	Figure 40: Voxelized objects with anti-aliased boundaries.
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	Figure 41: The effect of applying combinational operations to the interior of volumetric CVG objects (from Chen]). From left to ...
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	Figure 42: A satellite image, photo-mapped onto voxelized terrain.
	Figure 43: Solid textured CT head dataset. Top row: solid textures created using the “Noise” basis function. Bottom row: solid textures created using the “Turbulence” basis function. (Images taken from [281].)
	Figure 44: Hypertextured sphere (top row) and CT head dataset (bottom row). Left column: noise; Center column: fire; Right column: fur. (Images taken from [281].)
	Figure 45: A foot objected to a thin laser penetrating and burning the flesh, but stopping at the bone.
	Figure 46: Volume-sculpted bust.(Image from [6])
	Figure 47: Deformed skull reveals segmented brain. (Taken from [164])
	Figure 48: Animating the visible human via hardware-accelerated volume deformation. (Image from [299])
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	Figure 1: Some images obtained with volume rendering. From left to right: engine block (acquired via industrial CT), human knee, human head, human skeleton (all acquired via medical CT).


