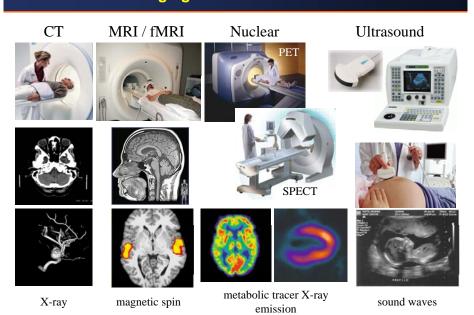
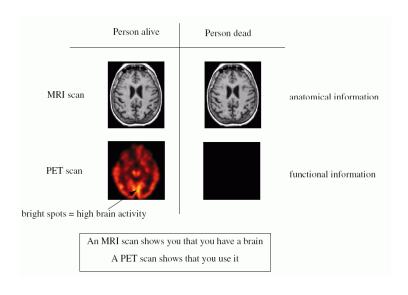
CSE 332/564: Visualization Where Do Medical Data Come From? Klaus Mueller


Computer Science Department

Stony Brook University

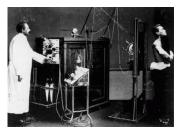

object imaging algorithm imaging device reconstructed cross-sectional image

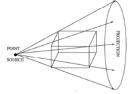
Overall Concept

Imaging Modalities Overview

Anatomic vs Functional Imaging

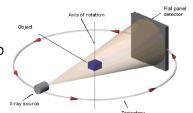
History: X-Rays

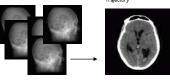

Wilhelm Conrad Röntgen


- 8 November 1895: discovers X-rays.
- 22 November 1895: X-rays Mrs. Röntgen's hand.
- 1901: receives first Nobel Prize in physics

An early X-ray imaging system:

Note: so far all we can see is a projection across the patient:

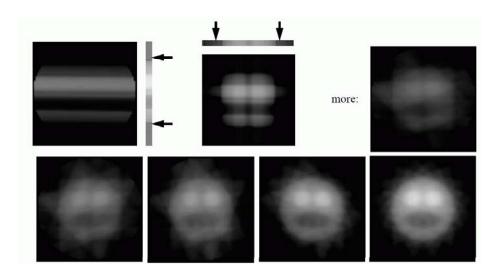

History: Computed Tomography


The breakthrough:

 acquiring many projections around the object enables the reconstruction of the 3D object (or a cross-sectional 2D slice)

CT reconstruction pioneers:

- 1917: Johann Radon establishes the mathematical framework for tomography, now called the Radon transform.
- 1963: Allan Cormack publishes mathematical analysis of tomographic image reconstruction, unaware of Radon's work.
- 1972: Godfrey Hounsfield develops first CT system, unaware of either Radon or Cormack's work, develops his own reconstruction method.
- 1979 Hounsfield and Cormack receive the Nobel Prize in Physiology or Medicine.



Radon

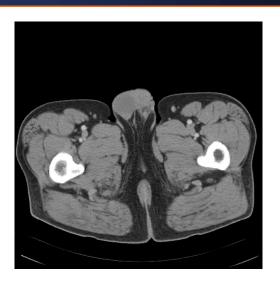
don Cormack Hounsfield

Computed Tomography: Concept

Computed Tomography: Past and Present

Image from the Siemens Siretom CT scanner, ca. 1975

• 128x128 matrix.

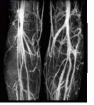

Modern CT image acquired with a Siemens scanner

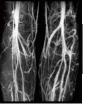
• 512x512 matrix

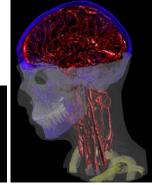
Slice Viewer

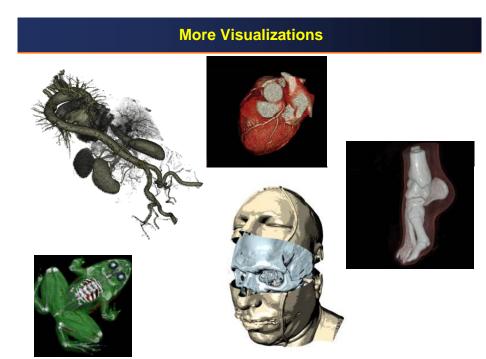
3D Visualization

Reconstructed object enables:

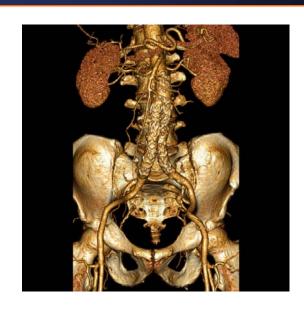

- Enhanced X-ray visualization from novel views:
- Maximum Intensity (MIP) visualization:







• Shaded object display:



Aortic Stent and Arterial Vessels

Cartotid Stenosis

Virtual Medicine

Virtual colonoscopy, endoscopy, arthroscopy
Virtual therapy and surgery planning
Training platform

History: Ultrasound

1942: Dr. Karl Theodore Dussik,

• transmission ultrasound investigation of the brain

• Subject submerged in water tank to achieve good acoustic coupling

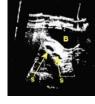


image of normal neck

1959: Automatic scanner, Glasgow

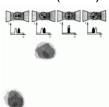
twin gestation sacs (s) and bladder (B).

Ultrasound: Present

3D Ultrasound

Intravasular ultrasound

Doppler ultrasound


History: MRI

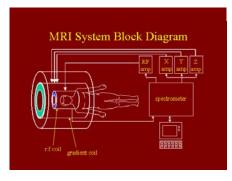
1946: Felix Bloch (Stanford) and Edward Purcell (Harvard) demonstrate nuclear magnetic resonance (NMR)

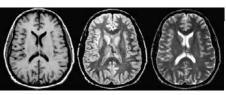
1973: Paul Lauterbur (Stony Brook University) published first MRI (Magnetic Resonance Imaging) image in Nature.

• receives the Nobel Prize in Physiology or Medicine in 2003

Late 1970's: First human MRI images conceived

Early 1980's: First commercial MRI systems available


1993: Functional MRI in humans demonstrated


MRI Concept

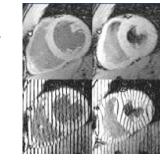
MRI measures the effects of magnetic properties of tissue

- these effects are tissue-specific
- also specific to blood perfusion / oxygenization (functional MRI)

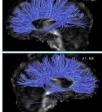
MRI is very versatile (but also more expensive than CT)

T1-weighted density-weighted T2-weighted

slice viewer

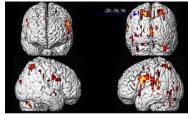

MRI Applications

Cardiac MRI

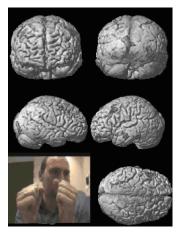

• measures the distortion of "tags" to assess motion of the heart tissue

Diffusion Tensor Imaging

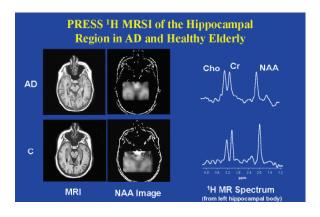
- measures the diffusion of water
- allows the tracking of nerve fibers in the brain (white matter)



MRI Applications

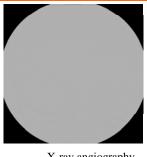

Functional MRI

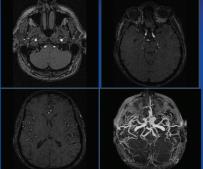
- allows to assess brain activity during certain tasks
- valuable for brain functional studies, but also for surgery planning and diagnosis



MRI Applications

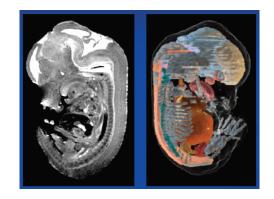
MR Spectroscopy


• measures the distribution of chemicals in each "voxel" of the brain


MRI Applications

MR Angiography

- magnetizes the bolus of blood, enhances vessels
- similar effects to X-ray angiography, but non-invasive



MRI Applications

MR Microscopy

- can resolve volumes of down to 50 mm³ (clincial MR does 1mm³)
- use for small animal experiments (in place of distructive histology)

Credits

Most historical data and some images were taken from a similar presentation by Dr. Thomas Liu, UC San Diego

Other images are due to (list not complete):

- Joe Kniss, U Utah
- Gordon Kindlmann, U Utah
- Markus Hadwiger, VRVis
- Stefan Bruckner, U Vienna
- Naeem Shareef. Ohio State U
- Viatronix, Inc.
- Phillips Medical