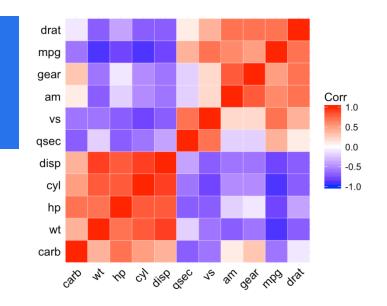
PROJECT #3: ADVANCED DISPLAYS

Theme: compare several visualization techniques for high-D data

- use D3 for visualization and python for analysis when needed
- use the data you selected with your 8 favorite attributes
- numerical data only, some parts mention categorical variables

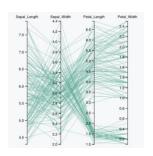

Make separate web pages for the following (10 points for each):

- 1. 8×8 correlation matrix (map positive/negative correlations to red/blue with intensity indicating correlation strength)
- 2. 5×5 scatter plot matrix (choose attributes with greatest aggregated correlation strength, see next slide), add 2 categorical variables of your choice for a 7×7 scatterplot matrix
- 3. parallel coordinates display with 8 axes (choose pairs by correlation strength, see next slide), add 2 categorical variables for 2 more axes
- 4. PCA plot (top 2 eigenvectors) with associated scree plot (8 bars)
- 5. biplot with 8 projected axes (project all into top 2 PCA vectors)
- 6. MDS display of the data (use Euclidian distance)
- 7. MDS display of the attributes (use 1-|correlation| distance)

SOME NOTES

Correlation matrix

the colors should look like this

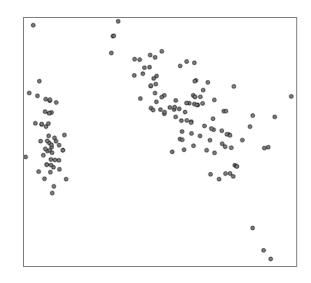


Scatterplot matrix plot selection

- add |correlation| along each correlation matrix column
- pick the 5 attributes with the highest sums and display

Parallel coordinates display axes ordering scheme

- pick pair with greatest |correlation| → axes A1, A2
- axis A1 is the attribute with highest correlation sum
- axis A3 is the attribute that has the highest |correlation| with A2
- axis A4 is the attribute that has the highest |correlation| with A3
- and so on....


MORE NOTES

Scree plot

use the bar charts you already have

MDS plots

- should look like this
- we will add cluster information in lab 5

Libraries

- you can precompute correlations, PCA, and MDS in python and read them as data files (not images!!) into your webpage
- The next slides will have information on the use of the libraries

CORRELATIONS

Install pandas

pip install pandas numpy

Import pandas

import pandas as pd

Load the data from a CSV file into a pandas dataframe

- file_path = 'your_data_file.csv'
- df = pd.read_csv(file_path)

Compute the correlation matrix

correlation_matrix = df.corr()

PCA

Install scikit-learn and numpy

pip install scikit-learn numpy

Import numpy

import numpy as np

Load the data with np.load

Be sure you standardize the data first

use theStandardScaler from sklearn.preprocessing

Use the PCA class from the sklearn.decomposition module

- principal_components contains the PCA vectors (each row corresponds to a principal component) – you can use them to project your data
- explained_variance contains the lambda values for each component (eigenvalues) – you can use them to plot in a scree plot

MDS

Use the sklearn.manifold library

from sklearn.manifold import MDS

Preparations

- read the csv datafile using a pandas dataframe
- compute the distance matrix using the pairwise_distances routine

Compute metric MDS

- mds = MDS(n_components=2, dissimilarity='precomputed', random_state=<some integer seed number you can choose>)
- mds_result = mds.fit_transform(distance_matrix).
- the 1st line sets up the MDS object, the 2nd produces the result
- the result holds 2-D coordinates of scatterplot points

DELIVERABLES

Submit by Thursday, October 24, 11:59 pm

- report discussing pros and cons for each of the seven displays (20 pts)
- relate these observation to <u>your</u> data
- are there any interesting findings you can make?
- what information of your data do these displays show well
- what information can't they show
- video that shows all capabilities of your interface
- archive file (zip, rar, tar) of your code and data

Point decomposition (the two w's of lab 3 execution)

- 8 points works (does the job)
- 2 points wow (does the job nicely)