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Iso-Surface Rendering

• A closed surface separates ‘outside’ from ‘inside’ (Jordan theorem)

• In iso-surface rendering we say that all voxels with values > some threshold are ‘inside’, and the

others are ‘outside’

• The boundary between ‘outside’ and ‘inside’ is the iso-surface

• All voxels near the iso-surface have a value close to the iso-threshold or iso-value

• Example:

cross-section of a smooth sphere iso-value = 50 iso-value = 200

insideiso-boundary

will render a large sphere will render a small sphere
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Iso-Surface Rendering - Example

iso-value = 30 iso-value = 80 iso-value = 200

Foot of the Visible Woman
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Iso-Surface Rendering - Details

• To render an iso-surface we cast the rays as usual...

but we stop, once we have interpolated a value  iso-threshold

voxel value = iso-threshold

voxel value < iso-threshold

• We would like to illuminate (shade) the iso-surface based on its orientation to the light source

• Recall that we need a normal vector for shading

• The normal vector N is the local gradient, normalized

stop hereray
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The Gradient Vector

• The gradient vector g=(gx, gy, gz)
T at the sample position (x, y, z) is usually computed via central-

differencing (for example, gx is the volume density gradient in the x-direction):

gx
f x 1– y z, ,( ) f x 1+ y z, ,( )–

2
-----------------------------------------------------------------------= g y

f x y 1– z, ,( ) f x y 1+ z, ,( )–
2

-----------------------------------------------------------------------= gz
f x y z 1–, ,( ) f x y z 1+, ,( )–

2
-----------------------------------------------------------------------=

voxel value = iso-threshold
voxel value < iso-threshold

ray
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2D central difference mask

extra sample points interpolated to estimate gradient

x x+1x-1

y+1

y

y-1

the x and y component

x

y

of the gradient vector

interpolated volume
density f(x+1, y, z)

for the smooth sphere

More on gradient filters later....
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Shading the Iso-Surface

• The normal vector is the normalized gradient vector g

  N = g / |g|   (normal vector always has unit length)

• Once the normal vector has been calculated we shade the iso-surface at the sample point

• The color so obtained is then written to the pixel that is due to the ray

detected iso-surface portion

N

Light IL

Eye

L

E
H

                The color is calculated with the standard shading equation:

                                       C = Cobj (ka IA + kd IL N·L) + ks IL (H·N)ns

Cobj is obtained by indexing the color transfer function with the interpolated sample value

rendered cube (light from the front)

shaded point

specular highlight
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Iso-Surface Rendering - Algorithm

RenderIsoSurface(Volume V, int stepSize)

for each image pixel p(i, j)

ray = (p(i, j) - eye) / | (p(i, j) - eye) |   /* the ray direction vector, normalized */

t = 0  /* start at the eye point */

do forever

sampleLoc = eye + t · stepSize · ray    /* step along the ray */

intVal = Interpolate(V, sampleLoc)

if opacityTransferFunction(intVal) > isoThreshold  /* found the iso-surface */

/* interpolate 6 samples around sampleLoc and compute the gradient */

gradVec = ComputeGradientVector(V, sampleLoc)

/* shade the surface using standard illumination model and color transfer functions */

{r, g, b} = Shade(gradVec, lightSource, eye, sampleLoc, {R, G, B}TransFunc(intVal))

value(p(i, j)) = {r, g, b}   /* write color into image pixel p(i, j) */

break  /* terminate this ray and go to next image pixel */

t = t + 1       /* iso-surface not found yet, get ready to step to next sample point */

eye

p(i, j)
i

j

ray

ray·stepSize

image
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Gradient Filter Theory (1)

• The gradient g is the derivative of the signal f

• So we can either:

- interpolate the signal fs first and then take the derivative (that is what we did before)

- take the derivative at the grid positions (→ gs=(gx, gy, gz)
T) and then interpolate gs

- take the derivative of h (→ h') and interpolate fs with h’

g f c'

h f s⊗( )'

h f s'⊗

h' f s⊗








= =

fc: continuous signal

fs: sampled signal

h: interpolation filter

‘: the derivative operator

⊗: convolution operator

where

Gaussian h

Derivative of a
Gaussian, h’
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Gradient Filter Theory (2)

• Quality evaluation is best done in the frequency domain:

2: Gaussian (H)

3: central difference (D)

1: optimal derivative filter

1

2 3

2: central difference * Gaussian (DH)

3: derivative of Gaussian (H’)

1: optimal derivative filter

1

2 3

• The optimal gradient filter is a ramp that ends at the cut-off frequency

- gradients (edges, etc.) are the high frequencies that we want to emphasize

- homogenous (uniform) regions have low frequencies and need to be suppressed

• The derivate filter H’ passes the higher frequencies better then DH but it also passes some aliases

- more sensitive to noise

- but promises to estimate crisper edges
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Interlude - The Marschner-Lobb Test Function for Filters

• A common test function to evaluate rendering filters is the Marschner-Lobb function

- when sampled into a 403 grid, 99.8% of the frequencies are below the Nyquist rate,

- the function is interesting since a significant portion of the spectrum is close to Nyquist

- this makes this function a demanding test for interpolation and gradient filters

• Usually the iso-value is set to 128

• Some images of the ML-function obtained with different interpolation filters:

ρ x y z, ,( ) 255
1 πz 2⁄( )sin–( ) α 1 ρr+ x

2
y

2
+ 

 
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 +

2 1 α+( )
--------------------------------------------------------------------------------------------------⋅= ρr r( ) 2π f M

πr
2

------ 
 cos 

 cos=
f M 6=

α 0.25=

original function tri-linear filter windowed sinc
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Gradient Filter Theory (3)

• It turns out that inaccurate estimation of gradients is much more noticeable than inaccurate inter-

polation

- this is because the lighting depends greatly on the normal vectors

- especially specular highlights (due to the exponentiation of H·N) are rather sensitive

• To show this, let us take a good filter (family) and vary its quality

• We know that the cubic function is a reasonably good interpolation filter

• To study the sensitivity, we can just vary the coefficient α to sub-optimal values

- use the cubic filter for interpolation

- use the derivative of the cubic function as a gradient filter

- theory has shown that α = -0.5 is a good choice for interpolation

- let us now deviate from that value and see what happens for both interpolation filter and gra-

dient filter

(We will see that the choice of α affects the derivative filter much more than the interpolation)
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Gradient Filter Theory (4)

Interpolation α = -0.2

Derivative α = -0.2 Derivative α = -1.0Derivative α = -0.5

Interpolation α = -1.0

Interpolation α = -0.5
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Iso-Surface Rendering - Tips and Tricks (1)

• Finding a good iso-value is not always easy

- make a histogram of the volume densities and look for peaks (isovalue = onset of peak)

• Good shading requires good gradients around iso-surface

- need smooth degradations at iso-surface for good gradient estimation

- else get aliasing (example: volumetric binary sphere)

density

# voxels
skin

muscle

fat

bone
histogram head dataset

binary sphere smooth sphere
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Iso-Surface Rendering - Tips and Tricks (2)

• Ray stepsize must be chosen sufficiently small

- choose stepsize of less or equal 1.0 voxel units (or we may get aliasing in the ray direction)

• But even for small stepsizes, we may never exactly hit the isosurface

- isosurface goes through a cell when at least one vertex, but not all, has a density > isoValue

- compute exact location of the iso-surface within a cell by solving a cubic function in t

• A variety of acceleration methods are possible:

- enclose the object in a bounding box and start rays at the bounding box intersection

- store distance values in voxels outside the object → this enables quick space leaping

- multi-resolution volume representation (octree)

isosurface

> isovalue
< isovalue

space leaping


