CSE 332
Introduction to Visualization

Introduction

Klaus Mueller

Computer Science Department
Stony Brook University
Creative visualization is a mental technique that uses the imagination to make dreams and goals come true. Used in the right way, creative visualization can improve your life and attract to you success and prosperity. It can alter your circumstances, cause events to happen, and attract money, possessions, work, people, and love into your life.
Second hit on Google Image:

It shares the “imagination” part
And these days, it can also bring you “success and prosperity”
And it may “attract work, people, and love into your life”
Why Visualization?
Let’s go back some 150 years to 1854, London, England
The most terrible outbreak of cholera which ever occurred in this kingdom, is probably that which is taking place in Broad Street, Golden Square, and adjoining streets.

Within two hundred and fifty yards of the spot where Cambridge Street joins Broad Street, there are upwards of five hundred fatal attacks of cholera in ten days.

The mortality in this limited area probably equals any that was ever caused in this country, even by the plague; and it is much more sudden, as the greater number of cases terminated in a few hours.
WHAT CAN WE DO?

WHAT IS THE CAUSE?

HOW CAN WE ELIMINATE IT?
TIME FOR “IMAGINATION”
Cholera spreads through water
- and not via some other fantastic causes
- one said it rose out of the burying grounds of plague victims from two centuries earlier
- the bacteria was discovered later, in 1886

A real-life experiment
- established the mode of cholera transmission
- and consequently the method of prevention: keep drinking water, food, and hands clear of infected sewage

Visualization provided
- inspiration
- convincing arguments to justify actions
- led to Dr. John Snow’s historic immortality
- a bar near the old Broad Street pump bears his name (safe drinking)
WHAT IS NEEDED FOR VISUALIZATION?
Classroom app for effective teacher – student interaction

- I ask a question
- you answer it
- we all look at the answers and learn

Platforms (free to students!!!)

- iOS, android → download the student edition from app store
- web browser → log into http://www.socrative.com/ as student

Login procedures

- Room name: CSE332
- Student ID: your SBU netID
WHAT IS NEEDED FOR VISUALIZATION?
WHAT IS NEEDED FOR VISUALIZATION – SOME APPROPRIATE ANSWERS

Data (wide variety)

Algorithms
- data mining
- data analytics
- machine learning

Computer
- run those algorithms
- data storage

Humans
- with a purpose/need to understand their data
- endowed with cognitive faculties, creative thought, intuition
- domain expertise

Understanding of humans
- perception, cognition, HCI issues
- we can gain it through experimentation with humans

= Visual Analytics
Dr. John Snow’s London Cholera Map of 1854
- data collection
- data assimilation
- statistical testing
- visualization
- computational analysis (brain)
- domain knowledge

Very early example of visual analytics
Let’s go back some 30 years to 1986, JFK Space Center, FL

73 SECONDS AFTER LIFT-OFF
What Happened?

What Was The Cause?
36 degrees F on Launch Pad 39
Rubber O-rings, nearly 38 feet (11.6 meters) in circumference; 1/4 inch (6.4 mm) thick.

The field joint that leaked.

Upon ignition, smoke leaked from this joint. A flame burned through 59 seconds later.

Exterior wall of rocket

Inside of rocket (filled with 500 tons of propellant)

Upper segment of rocket casing

Lower segment of rocket casing
Fast Forward
58 Seconds After Ignition
What Happened?

What Was The Cause?

Could It Have Been Prevented?
Two days before launch they presented their concerns
 - created 13 charts to make their case

Slide #1:

- SRM – Solid Rocket Motor
History of O-Ring Damage on SRM Field Joints

<table>
<thead>
<tr>
<th>SRM No.</th>
<th>Cross Sectional View</th>
<th>Top View</th>
<th>Clocking Location (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Erosion Depth (in.)</td>
<td>Perimeter Affected (deg)</td>
<td>Nominal Dia. (in.)</td>
</tr>
<tr>
<td>22A</td>
<td>None</td>
<td>None</td>
<td>0.280</td>
</tr>
<tr>
<td>22B</td>
<td>None</td>
<td>None</td>
<td>0.280</td>
</tr>
<tr>
<td>15A</td>
<td>0.010</td>
<td>154.0</td>
<td>0.280</td>
</tr>
<tr>
<td>15B</td>
<td>0.038</td>
<td>130.0</td>
<td>0.280</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>45.0</td>
<td>0.280</td>
</tr>
<tr>
<td>13B</td>
<td>0.028</td>
<td>110.0</td>
<td>0.280</td>
</tr>
<tr>
<td>11A</td>
<td>None</td>
<td>None</td>
<td>0.280</td>
</tr>
<tr>
<td>10A</td>
<td>0.040</td>
<td>217.0</td>
<td>0.280</td>
</tr>
<tr>
<td>2B</td>
<td>0.053</td>
<td>116.0</td>
<td>0.280</td>
</tr>
</tbody>
</table>

*Hot gas path detected in putty. Indication of heat on O-ring, but no damage.
**Soot behind primary O-ring.
***Soot behind primary O-ring, heat affected secondary O-ring.

Clocking location of leak check port - 0 deg.

Other SRM-15 field joints had no blowholes in putty and no soot near or beyond the primary O-ring.

SRM-22 forward field joint had putty path to primary O-ring, but no O-ring erosion and no soot blowby. Other SRM-22 field joints had no blowholes in putty.
Teaches about O-ring damage mechanics and erosion

Primitive Concerns -

Field Joint - Highest Concern

- Erosion penetration of primary seal requires reliable secondary seal for pressure integrity
 - Ignition transient - (0-600 ms)
 - (0-170 ms) High probability of reliable secondary seal
 - (170-330 ms) Reduced probability of reliable secondary seal
 - (330-500 ms) High probability of no secondary seal capability

- Steady state - (600 ms - 2 minutes)
 - If erosion penetrates primary O-ring seal - high probability of no secondary seal capability
 - Bench testing showed O-ring not capable of maintaining contact with metal parts gap opening rate to MEOP
 - Bench testing showed capability to maintain O-ring contact during initial phase (0-170 ms) of transient
Lists temperature and blow-by history for two SRMs

Blow By History

- **SRM-15** Worst Blow-By
 - 2 Case Joints (80°, 110°) Arc
 - Much worse visually than SRM-32

- **SRM 32** Blow-By
 - 2 Case Joints (30-40°)

SRM-13 A, 15, 16A, 18, 23A, 24A
- Nozzle Blow-By

<table>
<thead>
<tr>
<th>Motor</th>
<th>MBT</th>
<th>AMB</th>
<th>O-Ring</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM-1</td>
<td>68</td>
<td>36</td>
<td>47</td>
<td>10 MPH</td>
</tr>
<tr>
<td>DM-2</td>
<td>76</td>
<td>45</td>
<td>52</td>
<td>10 MPH</td>
</tr>
<tr>
<td>QM-3</td>
<td>72.5</td>
<td>40</td>
<td>48</td>
<td>10 MPH</td>
</tr>
<tr>
<td>QM-4</td>
<td>76</td>
<td>48</td>
<td>51</td>
<td>10 MPH</td>
</tr>
<tr>
<td>SRM-15</td>
<td>52</td>
<td>64</td>
<td>53</td>
<td>10 MPH</td>
</tr>
<tr>
<td>SRM-22</td>
<td>77</td>
<td>78</td>
<td>75</td>
<td>10 MPH</td>
</tr>
<tr>
<td>SRM-25</td>
<td>55</td>
<td>26</td>
<td>29</td>
<td>10 MPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>25 MPH</td>
</tr>
</tbody>
</table>
Given the information provided in the company slides

- would you vote for a launch?
- ignore you know about the consequences

Be keenly aware of the immense PR pressures

- President Reagan’s upcoming State of the Union speech
- the first civilian in space
- NASA’s funding problems

Launch:

- **No**: OK with a PR disaster & possible budget cuts down the road
- **Yes**: the rocket company is too cautious & concerns are unproven
Presentation only has exactly two shuttle flights
- one with two blow-by’s and high temperature
- one with two blow-by’s and low temperature
- ignores all other 22 shuttle flights (SRM)

Statistically weak

Recommendation
- “O-ring temp must be >53ºF at launch”
- is only based on a sample size of 1
- context of other flights is missing
- no statistical leverage
Deficiencies

Lots of numbers and facts

But no causal evidence that could predict

What is needed?
Need a measure for damage
Damage Index

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Temperature °F</th>
<th>Erosion incidents</th>
<th>Blow-by incidents</th>
<th>Damage Index</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>51-C</td>
<td>01.24.85</td>
<td>53°</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>Most erosion any flight; blow-by; back-up rings heated. Deep, extensive erosion.</td>
</tr>
<tr>
<td>41-B</td>
<td>02.03.84</td>
<td>57°</td>
<td>1</td>
<td></td>
<td>4</td>
<td>O-ring erosion on launch two weeks before Challenger. O-rings showed signs of heating, but no damage.</td>
</tr>
<tr>
<td>61-C</td>
<td>01.12.86</td>
<td>58°</td>
<td>1</td>
<td></td>
<td>4</td>
<td>Coolest (66°) launch without O-ring problems.</td>
</tr>
<tr>
<td>41-C</td>
<td>04.06.84</td>
<td>63°</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>04.12.81</td>
<td>66°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>04.04.83</td>
<td>67°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>51-A</td>
<td>11.08.84</td>
<td>67°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>51-D</td>
<td>04.12.85</td>
<td>67°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11.11.82</td>
<td>68°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>03.22.82</td>
<td>69°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11.12.81</td>
<td>70°</td>
<td>1</td>
<td></td>
<td>4</td>
<td>Extent of erosion not fully known.</td>
</tr>
<tr>
<td>9</td>
<td>11.28.83</td>
<td>70°</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>41-D</td>
<td>08.30.84</td>
<td>70°</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>51-G</td>
<td>06.17.85</td>
<td>70°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>06.18.83</td>
<td>72°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>08.30.83</td>
<td>73°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>51-B</td>
<td>04.29.85</td>
<td>75°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>61-A</td>
<td>10.30.85</td>
<td>75°</td>
<td>2</td>
<td></td>
<td>4</td>
<td>No erosion. Soot found behind two primary O-rings.</td>
</tr>
<tr>
<td>51-I</td>
<td>08.27.85</td>
<td>76°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>61-B</td>
<td>11.26.85</td>
<td>76°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>41-G</td>
<td>10.05.84</td>
<td>78°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>51-J</td>
<td>10.03.85</td>
<td>79°</td>
<td></td>
<td></td>
<td>0</td>
<td>O-ring condition unknown; rocket casing lost at sea.</td>
</tr>
<tr>
<td>51-F</td>
<td>07.29.85</td>
<td>81°</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
O-ring damage index, each launch

26°–29° range of forecasted temperatures (as of January 27, 1986) for the launch of space shuttle Challenger on January 28

Temperature (°F) of field joints at time of launch
Extrapolation of damage curve to the cold

Challenger launch: 31° forecasted
temperature for January 28, 1986

Dots indicate temperature and O-ring damage for 24 successful launches prior to Challenger. Curve shows increasing damage is related to cooler temperatures.
Used these charts

All information is there

- but very hard to identify and assimilate
- why?
Four seminal books

- standard literature for every visualization enthusiast

- taught information design at Princeton University
- now a professor at Yale University
Course Topics

CSE 332 Introduction to Visualization

Spatial Data Non-Spatial Data
Display Technology Data Mining
Perception & Cognition Insight
Large & Big Data Domain Knowledge
High Performance Computing

Knowledge

Visualization Interaction Analysis
SPATIAL DATA

shock wave

virtual frog

spiral flow

nerve cell

transparent MRI head

wind flow

semi-transparent tomato

MRI head
Spatial Data

Example: Datasets obtained by 3D volumetric scans (CT, MRI)

- what are some questions you might have?
Example: Datasets obtained by 3D Simulations
- what are some questions you might have?

Hypothesis: matter clumps together and attracts more matter.
Example: Data obtained by observation-supported simulations
- what are some questions you might have?

What are some questions you might have about Hurricane Katrina?
The salient features of a car:

- miles per gallon (MPG)
- top speed
- acceleration
- number of cylinders
- horsepower
- weight
- year
- country origin
- brand
- number of seats
- number of doors
- reliability (# of breakdowns)
- and so on...
How are MPG, weight, HP, and reliability related? Are there tradeoffs?
Which car is best for me?
Big Data

- 12+ TBs of tweet data every day
- 25+ TBs of log data every day
- 30 billion RFID tags today (1.3B in 2005)
- 4.6 billion camera phones worldwide
- 100s of millions of GPS enabled devices sold annually
- 76 million smart meters in 2009... 200M by 2014
- 2+ billion people on the Web by end 2011
VISUAL ANALYTICS VS. DATA SCIENCE

- Information Analytics
- Geospatial Analytics
- Scientific Analytics
- Statistical Analytics
- Cognitive and Perceptual Science
- Presentation, production, and dissemination
- Data Management & Knowledge Representation
- Scope of Visual Analytics
- Interaction
- Knowledge Discovery

Data Science

- Domain Expertise
- Scientific Method
- Math
- Statistics
- Advanced Computing
- Visualization
- Hacker Mindset
- Data Engineering
MODERN DATA SCIENTIST

MATH & STATISTICS

- Machine learning
- Statistical modeling
- Experiment design
- Bayesian inference
- Supervised learning: decision trees, random forests, logistic regression

DOMAIN KNOWLEDGE & SOFT SKILLS

- Passionate about the business
- Curious about data
- Influence without authority
- Hacker mindset
- Problem solver
- Strategic, proactive, creative, innovative and collaborative

PROGRAMMING & DATABASE

- Computer science fundamentals
- Scripting language e.g. Python
- Statistical computing packages, e.g., R
- Databases: SQL and NoSQL
- Relational algebra
- Parallel databases and parallel query

COMMUNICATION & VISUALIZATION

- Able to engage with senior management
- Story telling skills
- Translate data-driven insights into decisions and actions
- Visual art design
- R packages like ggplot or lattice
- Knowledge of any of visualization tools e.g. Flare, D3.js, Tableau
Make decisions based on data

- not purely on intuition and long business experience
- use a combination of these
Visualization can be beautiful
VISUALIZATION CAN BE BEAUTIFUL
Visualization Can Be Interactive

D3 Demo

Data-Driven Documents
Visualization Has a Long History
Visualization Can be Inspired by Art
Visualization Can be Deceptive
Visualization Can be Deceptive
Visualization Can be Deceptive

Count the number of black dots
Visualization Can be Deceptive
Visualization Can be Deceptive

Are the horizontal lines parallel or do they slope?
Visualization Can be Deceptive

How many legs does this elephant have?
Visualization Can be Deceptive

Julian Beever
Which circle in the middle is bigger?
Visualization can be Deceptive

Gun deaths in Florida

Number of murders committed using firearms

Source: Florida Department of Law Enforcement

C. Chan 16/02/2014
Can we trust the AI system?

- We are entering a new age of AI applications
- Machine learning is the core technology

Visualization Can be Enabling

DoD and non-DoD Applications
- Transportation
- Security
- Medicine
- Finance
- Legal
- Military

User
- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?
Visualization can be enabling

Visualization can establish trust
The human visual system is not perfect, but it’s extremely powerful.

Vision is an integral part of life.

Vision is the gateway to higher-level regions of the brain.

Exploit this fast and powerful processor for:
- complex data analyses, creative tasks, communicating ideas.

→ The science of visualization and visual analytics.
Text Books

Required

Optional
Tentative Schedule
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro, schedule, and logistics</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applications of visual analytics, data types</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Basic tasks</td>
<td>Project 1 out</td>
</tr>
<tr>
<td>4</td>
<td>Data preparation and representation</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Data reduction, notion of similarity and distance</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Dimension reduction</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Introduction to D3</td>
<td>Project 2 out</td>
</tr>
<tr>
<td>8</td>
<td>Visual perception and cognition</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Visual design and aesthetic</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Visual analytics tasks</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cluster analysis</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>High-dimensional data, dimensionality reduction</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Visualization of spatial data: volume visualization intro</td>
<td>Project 3 out</td>
</tr>
<tr>
<td>14</td>
<td>Introduction to GPU programming</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Visualization of spatial data: raycasting, transfer functions</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Illumination and isosurface rendering</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Midterm</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Scientific visualization</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Non-photorealistic and illustrative rendering</td>
<td>Project 4 out</td>
</tr>
<tr>
<td>20</td>
<td>Midterm discussion</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Principles of interaction</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Visual analytics and the visual sense making process</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Visualization of graphs and hierarchies</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Visualization of time-varying and streaming data</td>
<td>Project 5 out</td>
</tr>
<tr>
<td>25</td>
<td>Maps</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Memorable visualizations, visual embellishments</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Evaluation and user studies</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Narrative visualization, storytelling, data journalism, XAI</td>
<td></td>
</tr>
</tbody>
</table>
Grading CSE 332

Midterm (1st part of the course): 35%

Final (2nd part of the course): 35%

Projects (5): 30%

- propose a dataset DS and argue why you think it’s interesting (5%)
- code up a set of basic interactive D3.js visualizations for DS (5%)
- implement a set of suitable data analytics for DS (5%)
- interlude: create some spatial visualizations using ImageVis3D (5%)
- create an interactive D3.js visual analytics dashboard for DS (10%)
- all projects receive double-blind peer feedback via web submission

Participation:

- taken implicitly by ways of provided Socrative feedback

For late submission policy see [course website](#)

- course website will publish all course materials
Midterm (1st part of the course): 35%
Final project (presentation of a working app w/report): 35%
Projects (5): 30%
- describe a research project RP and its data-analysis aspects (5%)
- code up a set of basic interactive D3.js visualizations (5%)
- implement a set of suitable data analytics for RP (5%)
- interlude: create some spatial visualizations using ImageVis3D (5%)
- create an interactive D3.js visual analytics dashboard for RP (10%)
- all projects receive double-blind peer feedback via web submission

Participation:
- taken implicitly by ways of provided Socrative feedback

For late submission policy see course website
- course website will publish all course materials
Midterm (1st part of the course): 35%
Final project (presentation of a working app w/report): 35%
Projects (5): 30%
 \begin{itemize}
 \item describe a research project RP and its data-analysis aspects (5%)
 \item code up a set of basic interactive \textit{plotly} visualizations (5%)
 \item implement a set of suitable data analytics for RP (5%)
 \item interlude: create some spatial visualizations using ImageVis3D (5%)
 \item create an interactive \textit{plotly} visual analytics dashboard for RP (10%)
 \end{itemize}
all projects receive double-blind peer feedback via web submission

Participation:
 \begin{itemize}
 \item taken implicitly by ways of provided Socrative feedback
 \end{itemize}

For late submission policy see course website
 \begin{itemize}
 \item course website will publish all course materials