Motivation

Provide the user (scientist, doctor, …) with some means to:
- enhance contrast of local features
- remove noise and other artifacts
- enhance edges and boundaries
- composite multiple images for a more comprehensive view

There are two basic operations: global and local

Global operations:
- operate on the entire set of pixels at once
- examples: brightness and contrast enhancement

Local operations:
- operate only on a subset of pixels (in a pixel neighborhood)
- examples: edge detection, contouring, image sharpening, blurring

The Image Histogram

- A histogram lists the number of image pixels for each value

- The histogram reveals more insight about image contrast and brightness.
Grey Level Transformation: Basics

Problem: We only have a fixed number of grey levels (256) that can be displayed or perceived
- need to use this ‘real estate’ wisely to bring out the image features that we want

Use intensity transformations T_p
- enhance (remap) certain intensity ranges at the cost of compressing others

Grey Level Transformation: Enhancements

- enhance the dark areas (slope > 1)
- suppress the white areas (slope < 1)

Grey Level Transformation: Windowing

Dedicate full contrast to either bone or lungs

Grey Level Transformation: Windowing

using histogram equalization
Histogram Equalization

- Image contrast and brightness may be improved by modifying the histogram.
- The ‘contrast stretching’ operation requires the user to manipulate the image’s histogram.
- **Histogram equalization** is an automatic procedure to spread out the value distribution.

The discrete histogram equalization equation is:

\[
P_{\text{new}}(k) = \frac{\sum_{j=0}^{k} n(p_{\text{org}}(j))}{n_{\text{total}}} \cdot p_{\text{max}}
\]

- For example, the equalization transformation for a dark image would be:

Color Image Processing

- Convert the image from RGB to HSV space.
- Perform transformations of pixel H, S, V values via transfer functions.
- Convert the transformed HSV image back into RGB space and display.

Multi-Image Operations: Noise Averaging

Assume a pixel value \(p \) is given by: \(p = \text{signal} + \text{noise} \)

- \(E(\text{signal}) = \text{signal} \)
- \(E(\text{noise}) = 0 \), when noise is random

Thus, averaging (adding) multiple images of a steady noisy object will eliminate, or at least reduce, the noise.

Color Image Histogram Equalization

Equalize the V channel, and then convert back to RGB.

- **Original**
- **Hue transformed**
- **After averaging 16 subsequently acquired images**
Multi-Image Operations: Eliminating Background

In angiography, radio-opaque contrast agents (injected into the bloodstream) are used to enhance the perfused vessels.

An X-ray image is taken when the radio-opaque bolus of blood is coming through:
- however, the background reduces the contrast of the dye
- subtracting the (constant) background from the (dynamic) radiographic image leaves just the perfused structures (angio image)

![Image](after injection (radio-image) background (mask image) just the bolus (angio image))

Discrete Filters

Discrete filters since they operate on a discretized image:
- to implement discrete filters we use discrete convolution

\[
\text{for each } i, j, \quad \text{temp} = 0 \\
\text{for each } k, l, \\
\quad \text{temp} := p_{i-1,j-1} + \sum_{k=0}^{N} \sum_{l=0}^{N} w_{k,l} \quad w_{k,l} \\
\quad p_{i,j}^{\text{new}} = \text{temp}
\]

- place a weight matrix or mask at each pixel location \(p_{ij}\)
- this mask weighs the pixel's neighborhood and determines the output pixel's value
- important: do not replace the computed values into the original image, but write to an output image

Popular Discrete Filters: Lowpass

Smoothing (averaging, often weighted):
- also called low-passing: keeps the low frequencies, but reduces the high frequencies
- removes noise and jagged edges
- but also blurs the signal

\(S(k)\) (idealized case)

![Image](Simple averaging mask)

Smoothing:
- Averaging is the simplest form of smoothing (blurring)
- more complex functions (masks) are often used because they offer additional benefits
- for example: Gaussian (discretized)
- we shall see more on this later
Popular Discrete Filters: Median Smoothing

A non-linear filter, best used to remove speckle noise
- a regular smoothing filter would blur the speckles (and the signal)
- the median filter will eliminate the speckle and leave the signal as is

Procedure:
- convolve with a mask as usual
- but this time, for each mask position, sort the values under the mask
- pick the median and write it to the output image
- the speckle pixel will be an outlier and not be selected as the median

The Power of the Median Filter

Superior for speckle noise

original
smoothed
median filtered

Popular Discrete Filters: Highpass

Edge detector / enhancer:

\[
\nabla I = \nabla h * I \quad \text{first derivative (gradient)}
\]

\[
\nabla^2 I = \nabla^2 h * I \quad \text{second derivative (Laplacian)}
\]

- also called high-passing: keeps the high frequencies, but reduces the low frequencies
- enhances edges and contrast
- but also enhances noise and jagged edges

Highpass (2)

The Sobel filter comes in a pair of two masks:
- one mask computes an image for the x-derivative (dx), the other for the y-derivative (dy)
- this decreases the sensitivity to noise (sharpening tends to magnify high frequency noise)
- Note that pixel values below zero will occur at edges with negative gradients

We get two images, \(img_{dx}\) and \(img_{dy}\); their pixels are combined by:

\[
img_{ren} = \left(img_{dx}^2 + img_{dy}^2 \right)^{1/2} \quad \text{or} \quad img_{ren} = |img_{dx}| + |img_{dy}|
\]
Edge Enhancement

Several useful effects can be achieved by subsequent filtering with different masks (kernels) and/or multi-image operations.

Subtracting a smoothed image from the original image leaves the edges (the high frequencies):

- **original**
- **smoothed**
- **original - smoothed**

Multi-Pass Filtering: High-Pass

Multi-Pass Filtering: Unsharp Masking

Places the enhanced edges on top of a smoothed original.

Gaussian Kernel

The Gaussian kernel is a popular filter function:

- see book for 3x3 convolution masks

$$g$$

$$\nabla_x g$$

Gaussian

$$\nabla_y g$$

dy (y-gradient)

$$\nabla^2 g$$

Laplacian

(difference of two Gaussians)

$$I$$

$$g * I$$

$$I - g * I$$

$$g * I + (1 + \alpha)(I - g * I)$$
Global and Local Filtering: Shortcomings (1)

Windowing enhances contrast only for a specific range of grey levels (not sensitive to edges)
- strong edges with already good contrast are further enhanced

Edge enhancement (such as sharp masking) only boosts features within a certain frequency band
- this frequency band is determined by filter size -- features outside that band are not enhanced (cannot see many scales at the same time)
- all grey value variations (within that band) are enhanced, even if they already had good contrast

Global and Local Filtering: Shortcomings (2)

One more example: digital radiograph of a foot

Original window/level operation:
- original
- edge enhanced
- window/level operation

Multi-Scale Image Enhancement: Motivation

Designed to overcome these shortcomings
- enhancements will be visible at all scales at the same time
- this requires a pyramid of detail images that are added together

Image pyramid of lowpassed images
- a hierarchy of images, repeatedly lowpassed at scales of power of 2

Multi-Scale Image Enhancement: Detail Images

We have seen detail enhancement by high-pass filtering
- the result is called a detail image

We can create an image pyramid of detail images
- constructed by subtracting the smoothed image at the corresponding pyramid level from the original: $D_i = I - I_i \ast g$
- this gives us the detail D_i at scale i
Multi-Scale Image Enhancement: Detail Pyramid

A representation of the details occurring at multiple levels of scale is called detail pyramid.

We can reconstruct the image at level i by adding the expanded image at level $(i+1)$ to the detail at level i:

$$ I_i = D_i + E(I_{i+1}) $$

By adding all the details we can assemble the original image:

Multi-Scale Image Enhancement: Non-Linear Mapping

Strategy:
- create pyramid of detail images D_i
- apply a non-linear grey-scale transformation to each of the D_i
- this emphasizes the low-contrast details (previously invisible)
- it de-emphasizes the high-contrast details (to just noticeable levels)

finally, re-assemble the image by adding these transformed detail images recursively

Multi-Scale Image Enhancement: Results

This strategy has been employed in the MUSICA algorithm
- developed by the company Agva Gevaert
- routinely in used in digital radiography in hospitals worldwide

edge enhanced window/level operation MUSICA