Illumination

Total light decomposition

Light = reflected + transmitted + absorbed

Reflected light

Reflected light = ambient + diffuse + specular

\[I = I_a + I_d + I_s \]
Illumination - Examples

ambient

ambient + diffuse

ambient + diffuse + specular
(and a checkerboard)
Ambient Reflection

- Uniform background light
- $I_a = k_a I_A$
 - I_A: ambient light
 - k_a: material’s ambient reflection coefficient
- Models general level of brightness in the scene
- Accounts for light effects that are difficult to compute (secondary diffuse reflections, etc)
- Constant for all surfaces of a particular object and the directions it is viewed at
Diffuse Reflection

- Models dullness, roughness of a surface
- Equal light scattering in all directions
- For example, chalk is a diffuse reflector

\[L = \frac{\text{Light} - P}{|\text{Light} - P|} = \frac{(\text{Light}_x - P_x)}{|L'|}, \frac{(\text{Light}_y - P_y)}{|L'|}, \frac{(\text{Light}_z - P_z)}{|L'|} \]

\[|L'| = \sqrt{(\text{Light}_x - P_x)^2 + (\text{Light}_y - P_y)^2 + (\text{Light}_z - P_z)^2} \]

Dot product:

\[\mathbf{N} \cdot \mathbf{L} = (N_x L_x + N_y L_y + N_z L_z) \]

Lambertian cosine law:

\[I_d = k_d I_L \cos \phi = k_d I_L \mathbf{N} \cdot \mathbf{L} \]

- \(I_L \): intensity of light source
- \(\mathbf{N} \): surface normal vector
- \(\mathbf{L} \): light vector (unit length)
- \(\phi \): angle of light incidence
- \(k_d \): diffuse reflection coefficient (material constant)

Note: \(I_d = 0 \) for \(\mathbf{N} \cdot \mathbf{L} < 0 \)
Specular Reflection - Fundamentals

- Models reflections on shiny surfaces (polished metal, chrome, plastics, etc.)
- Ideal specular reflector (perfect mirror) reflects light only along reflection vector R
- Non-ideal reflectors reflect light in a lobe centered about R
 - $\cos(\alpha)$ models this lobe effect
 - the width of the lobe is modeled by Phong exponent n_s, it scales $\cos(\alpha)$

Phong specular reflection model:

$$I_s = k_s \ I_L \ \cos^{n_s} \ \alpha = k_s \ I_L \ (E \cdot R)^{n_s}$$

- I_L: intensity of lightsource
- L: light vector
- R: reflection vector $= 2 \ N \ (N \cdot L) - L$
- E: eye vector $= (\text{Eye-P}) / ||\text{Eye-P}||$
- α: angle between E and R
- n_s: Phong exponent
- k_s: specular reflection coefficient

- $n_s = \infty$ (perfect mirror)
- n_s large (100) (shiny surface)
- n_s small (8) (dull surface)
Specular and Diffuse Reflection - Varying the Coefficients

diffuse coefficient k_d

Phong exponent n_s
Specular Reflection - Using the Half Vector

• Sometimes the half vector H is used instead of R in specular lighting calculation
• Both alternatives have similar effects

Phong specular reflection model:

$$I_s = k_s \ I_L \ \cos^{ns} \ \beta = k_s \ I_L \ (H \cdot N)^{ns}$$

I_L: intensity of lightsource
L: light vector
H: half vector $= (L + E) / |L + E|$
R: reflection vector
E: eye vector
Total Reflected Light

- Total reflected light (for a white object):
 \[I = k_a I_A + k_d I_L N \cdot L + k_s I_L (H \cdot N)^{ns} \]

- Multiple lightsources:
 \[I = k_a I_A + \sum (k_d I_i N \cdot L_i + k_s I_i (H_i \cdot N)^{ns}) \]

- Usually, \(I \) is a color vector of (R=red, G=green, B=blue)
- Object has a color vector \(C_{obj} = (R_{obj}, G_{obj}, B_{obj}) \)
- Object reflects \(I \), modulated by \(C_{obj} \)
- Color \(C \) reflected by object:
 \[C = C_{obj} (k_a I_A + \sum (k_d I_i N \cdot L_i)) + \sum (k_s I_i (H_i \cdot N)^{ns}) \]

- In many applications, the specular color is not modulated by object color
 - specular highlight has the color of the lightsource

- Note: (R, G, B) cannot be larger than 1.0 (later scaled to [0, 255] for display)
 - either set a maximum for each individual term or clamp final colors to 1.0