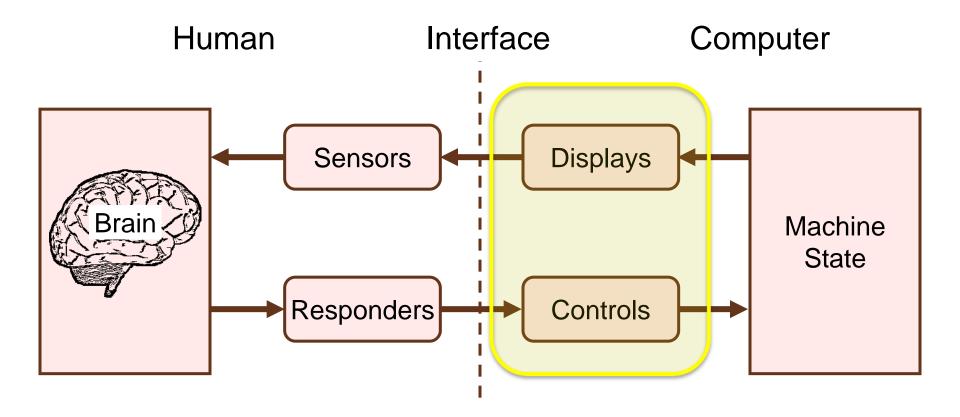


Human-Computer Interaction

An Empirical Research Perspective

I. Scott MacKenzie

Chapter 3 Interaction Elements


Interaction

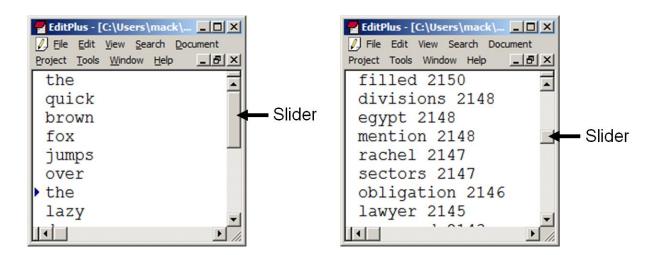
- *Interaction* occurs when a human performs a task using computing technology
- Interaction tasks with a goal:
 - Send an e-mail
 - Burn a CD
 - Program a thermostat
 - Enter a destination in a GPS device
- Interaction tasks without a goal:
 - Browse the web
 - Chat with friends on a social networking site

Interaction Elements

- Can be studied at many levels and in different contexts
- As presented here, the tasks are in the cognitive band of Newell's time scale of human action (see Chapter 2)
 - Deliberate acts (≈100 ms)
 - Operations (≈ 1 s)
 - Unit tasks (≈ 10 s)
- Tasks in this range are well suited to empirical research
- Experimental methodology preferred (extraneous behaviours easy to control)
- Early human factors research on "knobs and dials" is relevant today
- Knobs \rightarrow "controls"; dials \rightarrow "displays" (next slide)

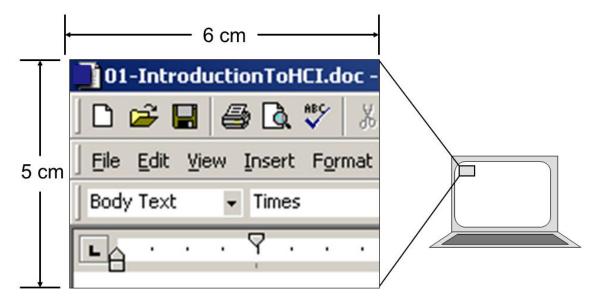
Human Factors Model (revisited)

Hard Controls, Soft Controls


- In the past, controls were physical, single-purpose devices → *hard controls*
- Today's graphical displays are malleable
- Interfaces created in software \rightarrow *soft controls*
- Soft controls rendered on a display
- Distinction blurred between soft controls and displays
- Consider controls to format *this* (see below)

Body Text \bullet Arial \bullet 28 \bullet **B I U** \diamond ϕ **E E E E**

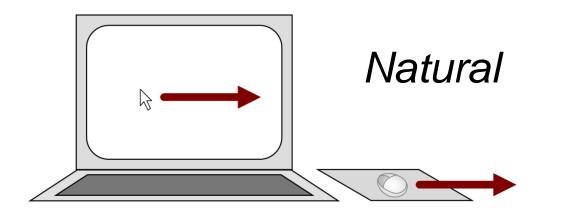
Soft controls are also displays!


Scrollbar Slider

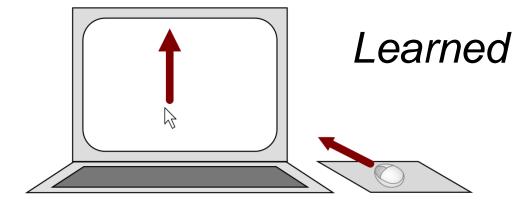
- Example of a soft control (control + display)
- As a control
 - Moved to change view in document
- As a display
 - Size reveals view size relative to entire document
 - Position reveals view location in document

GUI Malleability

- Below is a 30 cm² view into a GUI
- >20 soft controls (or are they displays?)

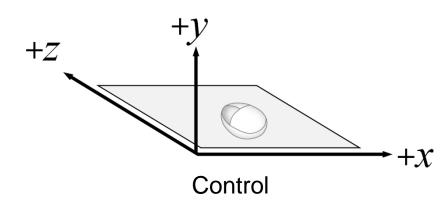


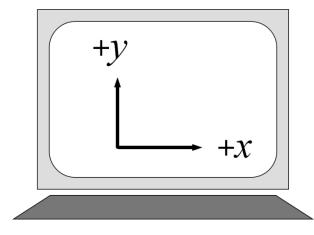
• Click a button and this space is morphed into a completely different set of soft controls/displays


Control-Display Relationships

- Also called *mappings*
- Relationship between operation of a control and the effect created on a display
- At least three types:
 - Spatial relationships
 - Dynamic relationships
 - Physical relationships

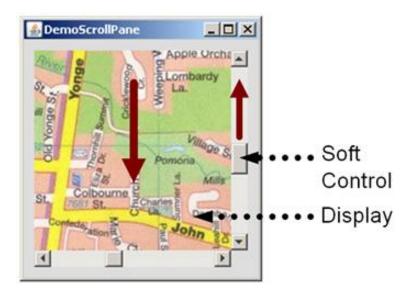
Spatial Relationships


Spatial congruence Control: right Display: right

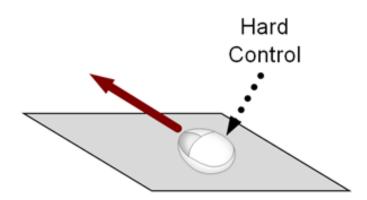

Spatial transformation

Control: forward Display: up

Axis Labeling

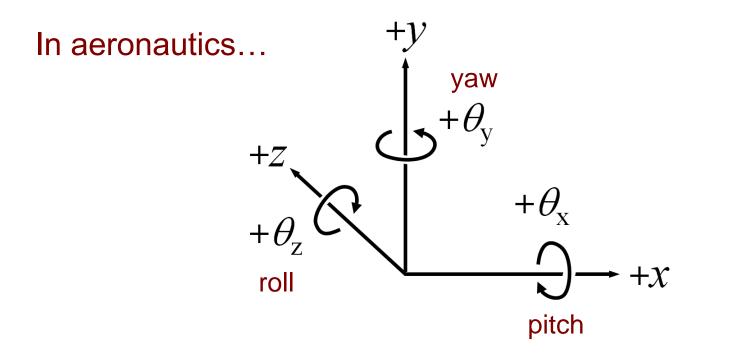


Axis	Control (mouse)	Display (cursor)
x	+	 +
У		+
z	+	

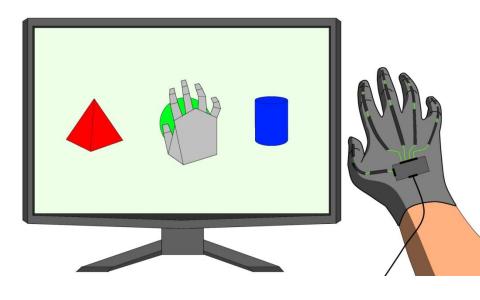


Display

Third Tier

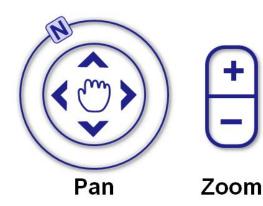


DOF	Hard Control	Soft Control	Display
x			
у		+	
z	+		
θx			
θγ			
θz			



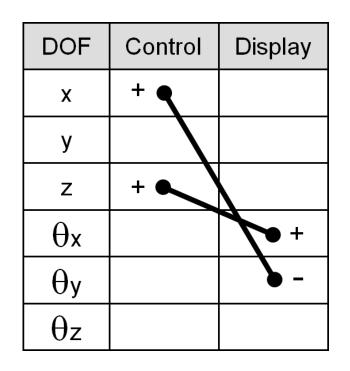
3D

- In 3D there are 6 degrees of freedom (DOF)
 - 3 DOF for position (*x*, *y*, *z*)
 - 3 DOF for orientation (θ_x , θ_y , θ_x)

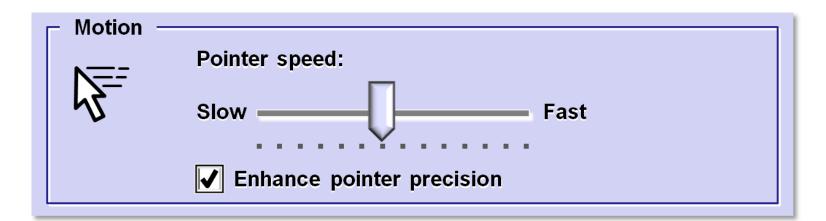

Spatial Congruence in 3D

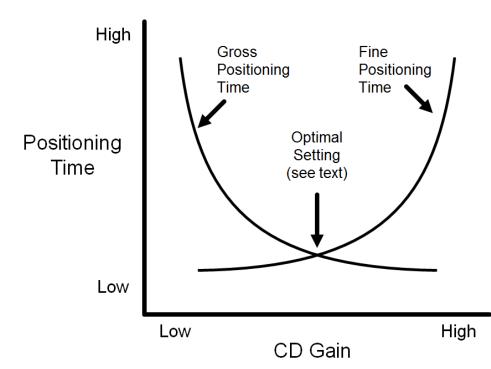
DOF	Control	Display
х	+ •	 +
у	+ •	 +
z	+ •	 +
θx	+ •	 +
θу	+ •	 +
θz	+ •	 +

3D in Interactive Systems


- Usually a subset of the 6 DOF are supported
- Spatial transformations are present and must be learned
- E.g., Google StreetView

Panning in Google StreetView

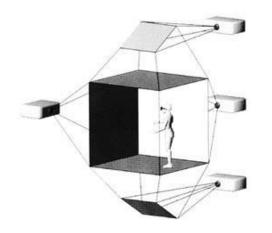

- (Switch to Google StreetView and demonstrate panning with the mouse)
- Spatial transformations:


CD Gain

- Quantifies the amount of display movement for a given amount of controller movement
- E.g., CD gain = 2 implies 2 cm of controller movement yields 4 cm of display movement
- Sometimes specified as a ratio (C:D ratio)
- For non-linear gains, the term *transfer function* is used
- Typical control panel to adjust CD gain:

CD Gain and User Performance

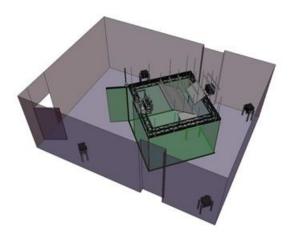
- Tricky to adjust CD gain to optimize user performance
- Issues:
 - Speed accuracy trade-off (what reduces positioning time tends to increase errors)
 - Opposing relationship between gross and fine positioning times:


Latency

- *Latency* (aka *lag*) is the delay between an input action and the corresponding response on a display
- Usually negligible on interactive systems (e.g., cursor positioning, editing)
- May be "noticeable" in some settings; e.g.,
 - Remote manipulation
 - Internet access (and other "system" response situations)
 - Virtual reality (VR)
- Human performance issues appropriate for empirical research


VR Controllers

- 6 DOF controllers common in VR and other 3D environments
- Considerable processing requirements
- Lag often an issue
- E.g., Polhemus G⁴TM (see below)
- Lag specified as <10 ms (which is low)
- But the user experiences the complete system



CAVE

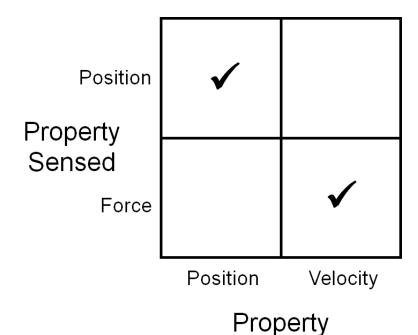
CAVE

Property Sensed, Order of Control

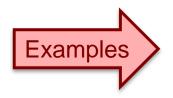
- Property sensed
 - Position (graphics tablet, touchpad, touchscreen)
 - Displacement (mouse, joystick)
 - Force (joystick)
- Order of control (property of display controlled)
 - Position (of cursor/object)
 - Velocity (of cursor/object)

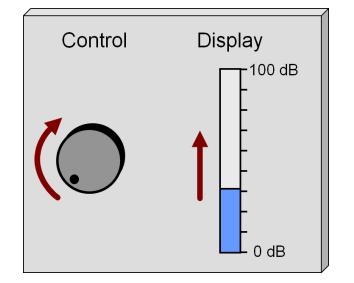
Joystick

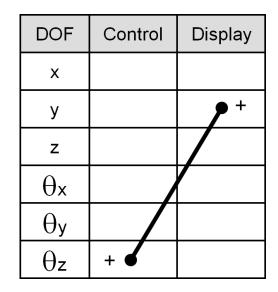
- Two types
 - Isotonic (senses displacement of stick)
 - Isometric (senses force applied to stick)


Isotonic joystick

Isometric joystick

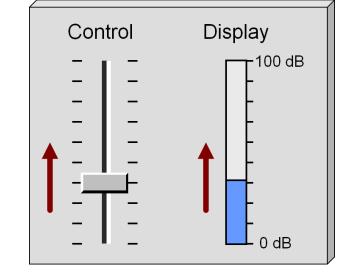

Joysticks (2)


- Optimal mappings
 - Isotonic joystick \rightarrow position control
 - Isometric joystick \rightarrow velocity control

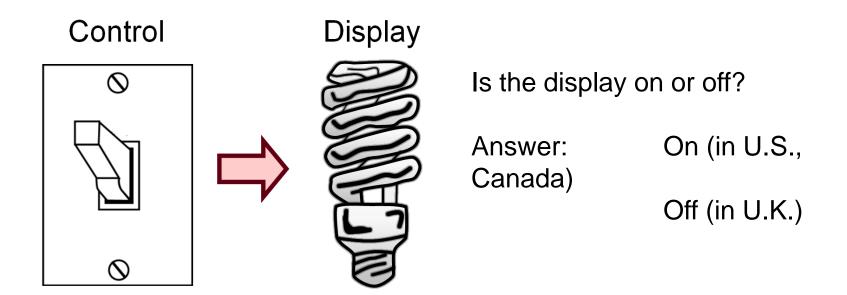


Natural vs. Learned Relationships

- Natural relationships \rightarrow spatially congruent
- Learned relationships → spatial transformation (relationship must be learned)



Learned relationship



DOF	Control	Display
х		
У	+	 +
z		
θx		
θу		
θz		

Learned Relationships

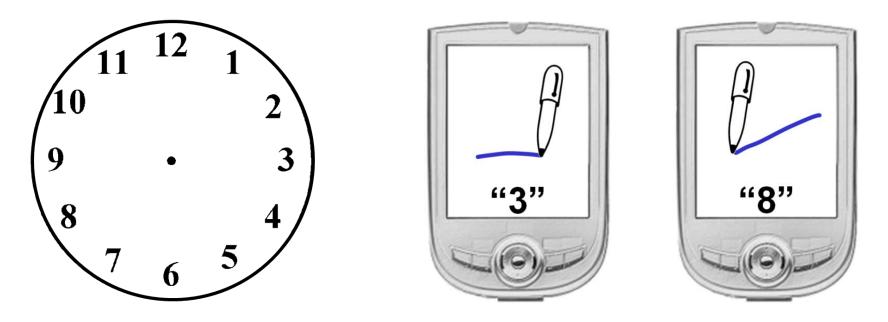
- Learned relationships seem natural if they lead to a *population stereotype* or *cultural standard*
- A control-display relationship needn't be a spatial relationship...

Mental Models

- Related terms: *physical analogy, metaphor, conceptual models*
- Definition: a physical understanding of an interface or interaction technique based on real-world experience
- Scroll pane: slider up, view up ("up-up" is a conceptual model that helps our understanding)
- *Desktop metaphor* is most common metaphor in computing
- Other commonly exploited real-world experiences:
 - Shopping, driving a car, calendars, painting
- Icon design, in general, strives to foster mental models

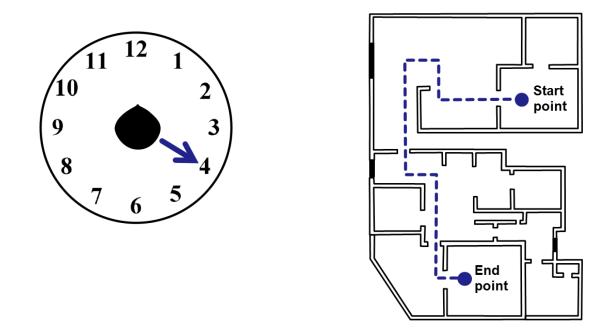
Graphics and Paint Applications

• Icons attempt to leverage real-world experiences with painting, drawing, sketching, etc.



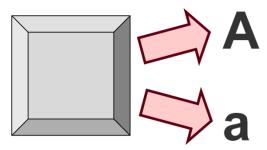
tooltips help for obscure features

Clock Metaphor


- Numeric entry on PDA¹
- Users make straight-line strokes in direction of digit on clock face

¹ McQueen, C., MacKenzie, I. S., & Zhang, S. X. (1995). An extended study of numeric entry on penbased computers. *Proceedings of Graphics Interface '95*, 215-222, Toronto: Canadian Information Processing Society.

Clock Metaphor (2)


- Blind users carry a mobile locating device¹
- Device provides spoken audio information about nearby objects (e.g. "door at 3 o'clock")

¹ Sáenz, M., & Sánchez, J. (2009). Indoor position and orientation for the blind. *Proceedings of HCI International 2007*, 236-245, Berlin: Springer.

Modes

- A *mode* is a functioning arrangement or condition
- Modes are everywhere (and in most cases are unavoidable)
- Office phone light: *on* = message waiting, *off* = no messages
- Computer keyboards have modes
 - ~≈100 keys + SHIFT, CTRL, ALT → ≈800 key variations

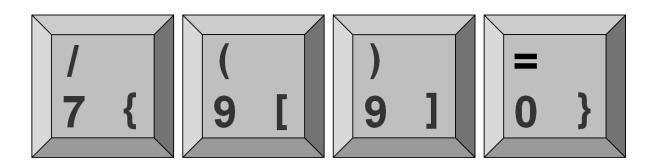
F9 – Microsoft Word (2010)

• At least six interpretations, depending on mode:

F9 \rightarrow Update selected fields

SHIFT+F9 \rightarrow Switch between a field code and its result

 $CTRL+F9 \rightarrow$ Insert an empty field


CTRL+SHIFT+F9 → Unlink a field

ALT+F9 \rightarrow Switch between all field codes and their results

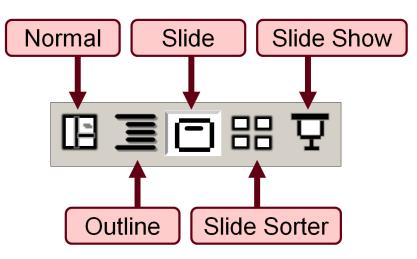
ALT+SHIFT+F9 → Run GOTOBUTTON or MACROBUTTON from the field that displays the field results

International Keyboards

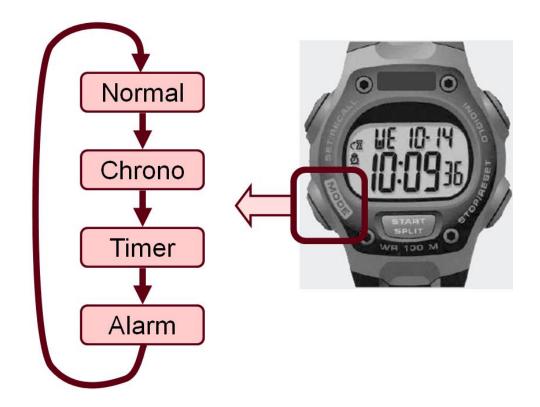
- Some keys bear three symbols
- How to access the third symbol?
- German keyboard example:

Mobile Phone Example

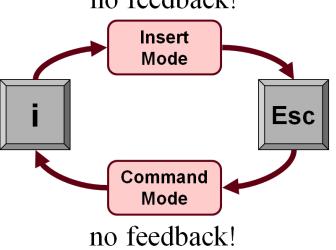
- Navi key (first introduced on Nokia *3210*)
- Mode revealed by word above
- At least 15 interpretations: Menu, Select, Answer, Call, End, OK, Options, Assign, Send, Read, Use, View, List, Snooze, Yes


Contemporary LCD Monitor

- Similar to Navi key idea
- No labels for the four buttons above power button
- Function revealed on display when button pressed
- Possibilities explode

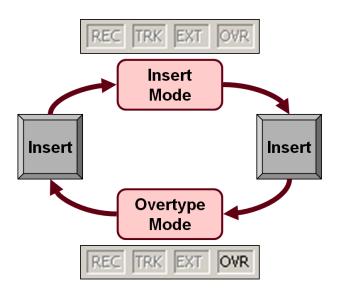

Mode Switching

- PowerPoint: Five view modes
- Switch modes by clicking soft button
- Current mode apparent by background shading
- Still problems lurk
- How to exit Slide Show mode?
 - PowerPoint \rightarrow ESC
 - Firefox \rightarrow ?

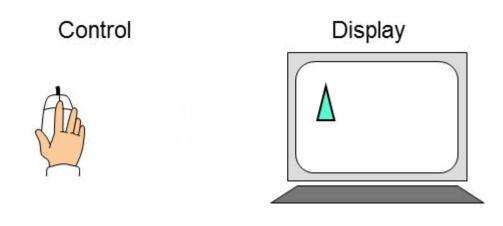

Mode Switching (2)

- Sports watch
- Single button cycles through modes

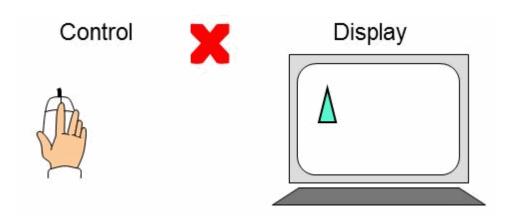
Mode Visibility


- Shneiderman: "offer information feedback"¹
- Norman: "make things visible"²
- unix *vi* editor: Classic example of no mode visibility: no feedback!

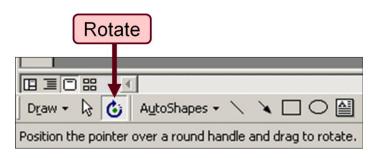
¹ Shneiderman, B., & Plaisant, C. (2005). *Designing the user interface: Strategies for effective human-computer interaction*. (4th ed.). New York: Pearson.
 ² Norman, D. A. (1988). *The design of everyday things*. New York: Basic Books.

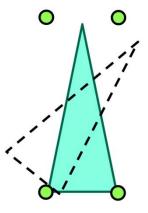

Mode Visibility (2)

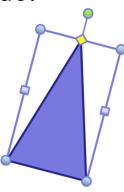
- Insert vs. Overtype mode on MS/Word
- Some variation by version, but the user is in trouble most of the time


Modes and Degrees of Freedom

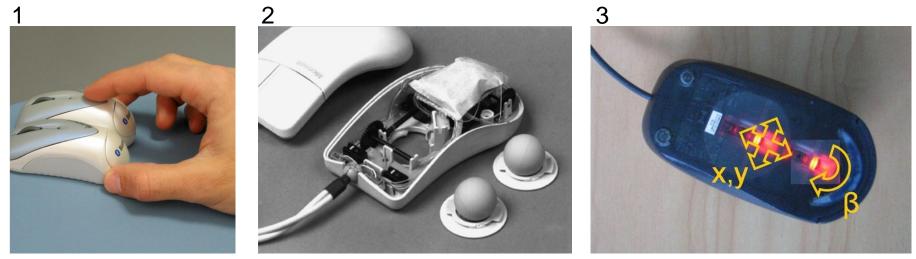
- If control DOF < display DOF, modes are necessary to fully access the display DOF
- Consider a mouse (2 DOF) and a desktop display (3 DOF)
- *x*-*y* control (no problem):


but


• Rotation is a problem:


Rotate Mode

- The solution: Rotate mode
- Two approaches
 - Separate rotate mode:

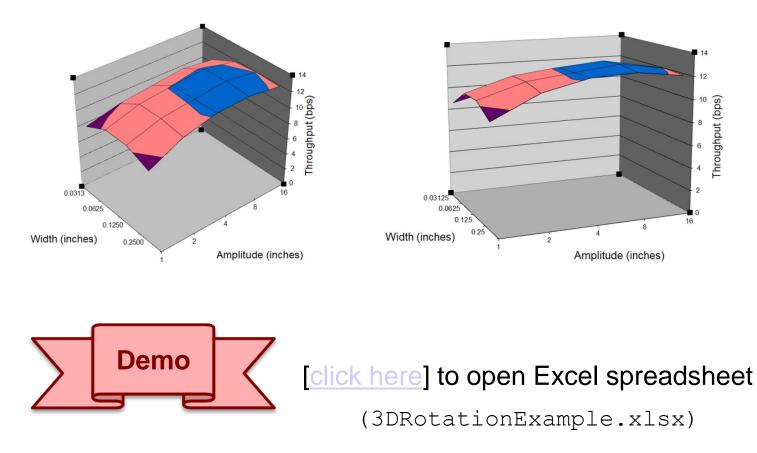

- Embedded rotate mode:

Could be avoided with...

3 DOF Mouse

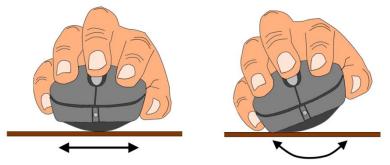
• Lots of research:

• But no commercial products (yet!)

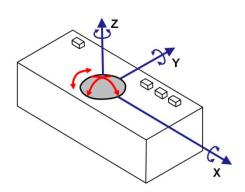

¹ Almeida, R., & Cubaud, P. (2006). Supporting 3D window manipulation with a yawing mouse. *Proc NordiCHI 2006*, 477-480, New York: ACM.

² MacKenzie, I. S., Soukoreff, R. W., & Pal, C. (1997). A two-ball mouse affords three degrees of freedom. *Proc CHI* '97, 303-304, New York: ACM.

³ Hannagan, J., & Regenbrecht, H. (2008). *TwistMouse for simultaneous translation and rotation*. Tech Report. HCI Group. Information Science Department. University of Otago, Dunedin, New Zeland. 44


3D Rotation

- Mapping controller *x*-*y* to display $\theta_x \theta_y \theta_z$
- Very awkward (to be polite)



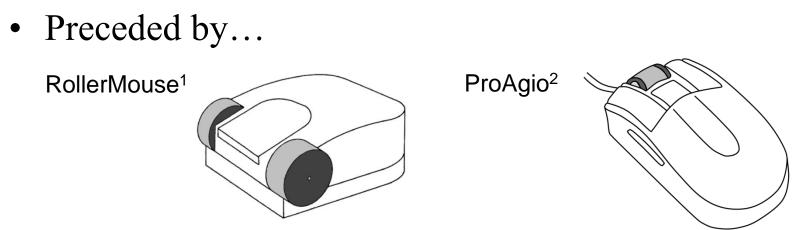
>2 Degrees of Freedom

- Examples in the HCI research literature
- 4 DOF *Rockin' Mouse*¹

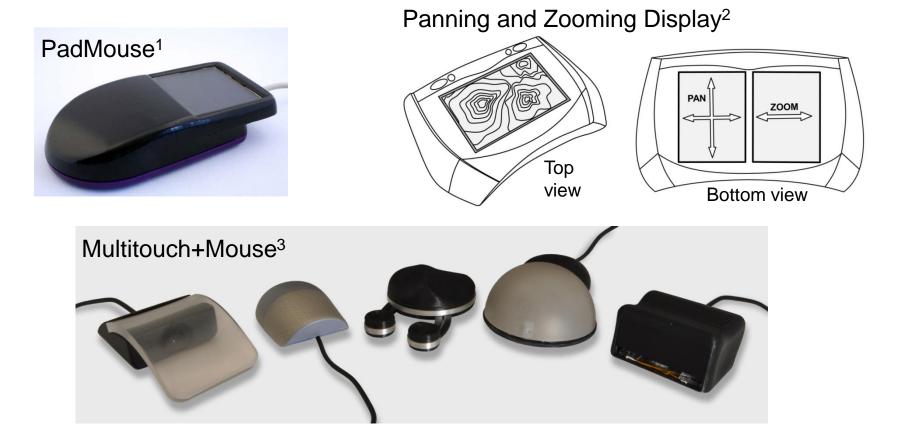
• Three-axis trackball²

¹ Balakrishnan, R., Baudel, T., Kurtenbach, G., & Fitzmaurice, G. (1997). The Rockin'Mouse: Integral 3D manipulation on a plane. *Proc CHI* '97, 311-318, New York: ACM.
 ² Evans, K. B., Tanner, P. P., & Wein, M. (1981). Tablet based valuators that provide one, two, or three degrees of freedom. *Computer Graphics*, *15*(3), 91-97.

Separating the Degrees of Freedom


- More DOF is not necessarily better
- Must consider the context of use
- Etch-A-Sketch: separate 1 DOF *x* and *y* controllers:

Wheel Mouse


- Separate DOF via a wheel
- Successful introduction by Microsoft in 1996 with the *IntelliMouse* →

¹ Venolia, D. (1993). Facile 3D manipulation. *Proc CHI '93*, 31-36, New York: ACM. ² Gillick, W. G., & Lam, C. C. (1996). U. S. Patent No. 5,530,455.

Adding a Touch Sensor

¹ Balakrishnan, R., & Patel, P. (1998). The PadMouse: Facilitating selection and spatial positioning for the non-dominant hand. *Proc CHI* '98 (pp. 9-16): New York: ACM.

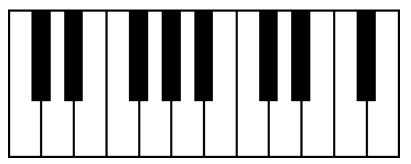
² Silfverberg, M., Korhonen, P., & MacKenzie, I. S. (2003). International Patent No. WO 03/021568 A1.
³ Villar et al. (2009). Mouse 2.0: Multi-touch meets the mouse. *Proc UIST '09*, 33-42, New York: ACM. ⁴⁹

Mobile Context

- Touchscreens are the full embodiment of direct manipulation
- No need for a cursor (cf. indirect input)

Touch Input Challenges

- Occlusion and accuracy ("fat finger problem")
- Early research \rightarrow Offset cursor¹
- Contemporary systems use variations; e.g., offset animation:

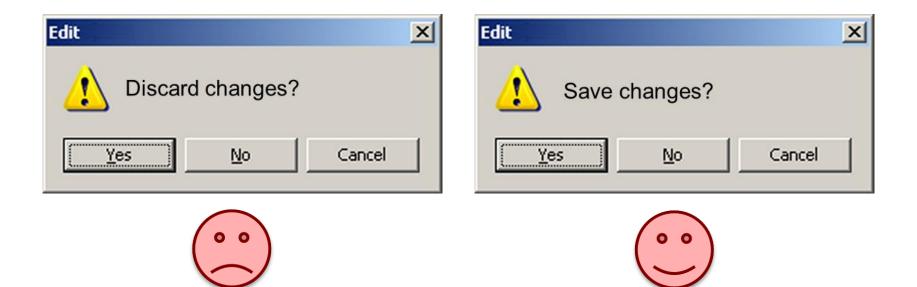

¹ Potter, R., Berman, M., & Shneiderman, B. (1988). An experimental evaluation of three touch screen strategies within a hypertext database. *Int J Human-Computer Interaction*, *1* (1), 41-52. 51

Multitouch

Multitouch (>2)

Accelerometers

- Accelerometers enable tilt or motion as an input primitive
- Technology has matured; now common in mobile devices
- Many applications; e.g., spatially aware displays:



Interaction Errors

- Discussions above focused on physical properties of controllers and the interactions they enable
- Interaction involves the human (sensors, brain, responders) and the machine
- Interaction errors are unavoidable (and, hence, are akin to an "interaction element")
- We conclude with a look at interaction errors and their consequences
- Themes: (see **HCI:ERP** for discussion)
 - Big, bad errors are high in consequences and therefore get a lot of attention
 - Little errors are low in consequences and therefore tend to linger
 - There is a continuum

Discard Changes

• Default dialogs to quit an application:

CAPS_LOCK

• Some log-in dialogs alert the user if CAPS_LOCK is on...

• while others do not...

ACM	myACM
Member Log-in:	
Web Account:	MYACCOUNT
Password:	
	LOG IN

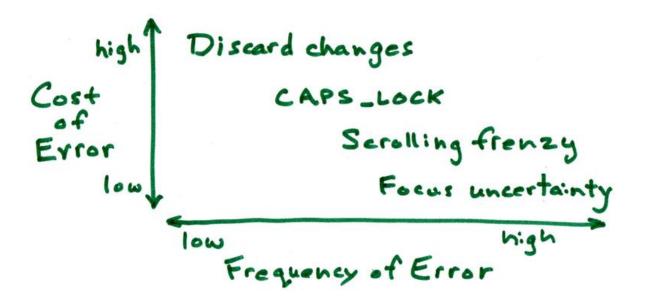
Scrolling Frenzy

- Drag to select a range of text
- As the dragging extent approaches the edge of the scroll pane, the user is venturing into a difficult situation

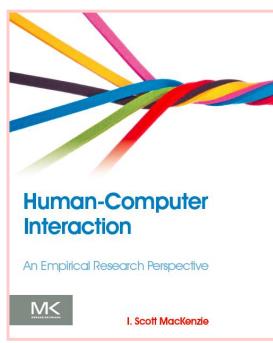
chi2008note.doc
] 🗅 😅 🖬 🎒 🖪 🐮 🐇 🖻 🋍 🝼 🕬 🖓 🔹 🍪 🥵 👖 133% 🔹 🔅
Eile Edit Yiew Insert Format Tools Table Window Help Acrobat
Normal \bullet 10 \bullet B $I \equiv \equiv = = = = = • x^2 \times x^2 \times x^2$
We describe an experiment to test the hypothesis that Fitts'
throughput is independent of the speed-accuracy tradeoff.
Eighteen participants used a mouse in performing a total of
5,400 target selection trials. Comparing nominal, speed-
emphasis, and accuracy-emphasis conditions, significant
main effects were found on moven int time (ms) and error
rate (%), but not on throughput (bit.). In the latter case,
failure to reject the null hypothesis of "no significant
🛛 Dr_aw + 😓 🍪 AutoShapes + 🔨 🔌 🗖 🔿 🎒 🐴 + 🚣 + 🗮 🔅
Page 1 Sec 2 1/4 At 3.3" Ln 13 Col 32 REC TRK EXT OVR

Focus Uncertainty

• After entering data into a fixed-length field, some interfaces advance focus the next field...


• while others do not...

Area Code 905 Telephone Number	-	


www.serviceontario.ca

Cost vs. Frequency of Errors

- Message: High frequency / low cost errors are the most interesting
- They...
 - Have evaded the scrutiny of designers
 - Keep users on guard

Thank You

