Medium Access Control

Fundamental Problem

- N nodes in vicinity want to transmit (to, say, N other nodes).
- How to do this "interference free"?
 - Interference free means SINR $\geq \beta$
- Otherwise, we say that packets collide.
- Assume a simple but common scenario: All nodes are so close that two simultaneous transmissions will always collide. Also, assume that they are all in the same channel.

General Solution

- *Multiplex* transmissions over time.
- Coordinated access:
 - Each node is somehow "scheduled" to transmit in certain intervals of time.
 - Schedule chosen to avoid collision of simultaneous transmissions.
 - Problem: Who does the coordination? How? Need a "coordinator". Need to know who has packet when and who collides with whom.

• Random access:

- Simple alternative. Nodes transmit at random times.
- Simply hope that they do no collide.
- We discuss random access first.

Aloha Protocol (Slotted and Unslotted)

- The most primitive random access protocol
 - Originally invented in the 70s and a pre-cursor of many advanced designs later.
 - Still used in modified form in ultra low –power communications, e.g., RFID.
- Protocol: Transmit packets immediately (if not transmitting already).
- Appears random as packets are generated randomly.
- Slotted version assumes that packet transmissions are synchronized with time slots.

Aloha Protocol Example

Aloha

Slotted Aloha

Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2008

Slotted Aloha

- One slot = one packet
- Each slot has one of three states
 - Successful (S): Exactly one node transmits.
 - Collision (C): More than one node transmits.
 - Idle (I): No node transmits.
- Assume that each node transmits in a slot with probability p. The #nodes is η .
- Normalized throughput
 - = throughput / capacity
 - = #successful slots/ total #slots (think why?)
 - = Prob. of a slot being successful.

Performance

- Max. possible normalized throughput is 36% (18%) for slotted (unslotted) Aloha when #nodes is very large.
- This is obviously too poor.
- However, the protocol is still very attractive in loT devices when
 - device is resource constrained and simple protocols are favored.
 - Poor throughput is acceptable.

Carrier Sense Multiple Access (CSMA)

- How to improve throughput?
- Avoid collision. Listen before talk. A node may transmit only when the medium is sensed idle.
- Need to implement channel sensing. Also, called carrier sensing. In standards, sometimes also called clear channel assessment (CCA).

Carrier Sensing

- Typically performed via energy (or power) detection.
- Potential implementation:
 - Listen to channel and measure the received power.
 - If power exceeds given threshold, channel busy.
 - This threshold is called carrier sense threshold P_{CS}
- It takes non-zero time to sense carrier. Called carrier sensing delay.

Slotted CSMA Protocol

- Packet size = L (in time units).
- Slot size = $\delta = \tau + \sigma$, where τ is worst case propagation delay and σ is worst case carrier sensing delay.

P-persistence

- 1. If wish to transmit in a slot i, sense carrier first.
- 2. Channel busy -> go to next slot *i+1*.
- Channel idle -> still go to next slot i+1. (Note channel sensing can take a whole slot.)
 Transmit with probability p in slot i+1.
 (Note that p =1 may result in a lot of collisions).
- 4. If no transmission, still sense carrier. Repeat.

Numerical Results

Various values of δ/L are chosen from 0.001 to 0.1

Of note, L/δ is packet size in slots

[Utilization is same as normalized throughput]

$$n = 10$$

Backoff

- Backoff is a simple way to implement p-persistence in practical protocols.
- Backoff = number of valid transmission opportunities skipped before actual transmission.
- Randomly chosen, but bounded.
- Example:
 - Backoff interval is chosen uniformly at random in range [Bmin, Bmax].
 - Initialize a counter by this value.
 - Decrement counter after each slot at each valid transmission opportunity (i.e., slot detected idle).
 - On a valid opportunity, if counter 0, transmit.

Responding to Packet Losses

- Packet losses can occur due to collisions.
 Multiple nodes can decide to start transmission in the same slot.
- To reduce collision, access probability (p) must be reduced.
 - Can be achieved by increasing the window over which the backoff interval is chosen.
 - Exponential backoff: [0,cw-1] -> [0,2*cw-1] on packet loss.

Network Assumptions

- Recall our assumption so far has been that nodes are close such that two simultaneous transmissions will always collide.
- This also means that any two nodes that may collide also carrier sense each other.
- We have seen that collisions are still possible.
 - But randomization was used to reduce this possibility.
- Now, we consider the possibility that two nodes may not be able sense each other's carrier, but their transmissions could still collide.

Hidden Terminals

- A and C cannot carrier sense each other. But their transmissions can collide at B.
- A and C are hidden terminals.
- A CSMA-based protocol will cause frequent collisions.

Observation

- The real issue is that carrier sensing is done at transmitter. But collision happens at the receiver.
- Information asymmetry: Information available at transmitter and receiver are not the same.

Simple Solution

- Make carrier sensing more sensitive.
- Thus, both A and C will actually sense each other.
- Works, but this worsens another problem.

Exposed Terminal Problem

- In principle, A->B and C->D transmissions can go in parallel without collisions.
- But A and C can hear each other. C will wait for A->B to end before starting C->D.
- A and C are "exposed" terminals.
- More sensitive carrier sensing increases exposed terminal problem.

More Involved Solutions to Hidden Terminal Problem

- Virtual carrier sensing implement carrier sensing at the receiver via additional control messaging.
- Busy tone approach a receiver when busy receiving emits a tone. Transmitters carrier sense on this tone.

Summary So Far

- Random access protocols are attractive for IoT for simplicity of implementation and completely distributed operation.
- Standard: IEEE 802.15.4 personal area network standard is based on CSMA protocol ideas discussed.
 - Zigbee is based on this.

Alternative: Scheduled Access

 Suppose time is slotted. Schedule transmissions in slots so that they do not collide.

Recall Example

If the SINR condition is not satisfied, we say that packets "collide."

If A->B and C->D transmissions collide, they must be scheduled in a different slot.

TDM Scheduling

- TDM = Time Division Multiplexing
- There must be a central scheduler e.g., an access point that must know
 - Who can collide with whom
 - Who has packets to send and allocate slots accordingly.
- Advantages: No collisions at all. Also, can conserve power easily – just switch off when no slots scheduled.
- Disadvantage: Need a scheduler that must know interference and traffic information.

Summary So Far

- We covered
 - Physical layer
 - Medium access protocols
 targeting wireless short range networks
- In the next lecture, we will cover
 - Routing layer
 - Localization
 - RF-powered backscatter networks