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• Organizing data into classes such that there is 

• high intra-class similarity 

• low inter-class similarity  

•  Finding the class labels and the number of classes directly 

from the data (in contrast to classification). 

• More informally, finding natural groupings among objects.  

What is Clustering? 
Also called unsupervised learning, sometimes called 

classification by statisticians and sorting by 

psychologists and segmentation by people in marketing 



What is a natural grouping among these objects? 



School Employees  Simpson's Family  Males  Females  

Clustering is subjective 

What is a natural grouping among these objects? 



What is Similarity? 
The quality or state of being similar; likeness; resemblance; as, a similarity of features.  

Similarity is hard 

to define, but…  

“We know it when 

we see it” 

 

The real meaning 

of similarity is a 

philosophical 

question. We will 

take a more 

pragmatic 

approach.   

Webster's Dictionary 



Defining Distance Measures 
Definition: Let O1 and O2 be two objects from the 

universe of possible objects. The distance (dissimilarity) 

between O1 and O2 is a real number denoted by D(O1,O2) 

0.23 3 342.7 

Peter Piotr 



 

What properties should a distance measure have? 

 

• D(A,B) = D(B,A)  Symmetry  

• D(A,A) = 0   Constancy of Self-Similarity 

• D(A,B) = 0 IIf A= B   Positivity (Separation) 

• D(A,B)  D(A,C) + D(B,C) Triangular Inequality  

 

Peter Piotr 
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When we peek inside one of 

these black boxes, we see some 

function on two variables. These 

functions might very simple or 

very complex.  

In either case it is natural to ask, 

what properties should these 

functions have? 



Intuitions behind desirable 

distance measure properties 

D(A,B) = D(B,A)   Symmetry  

Otherwise you could claim “Alex looks like Bob, but Bob looks nothing like Alex.” 

 

D(A,A) = 0    Constancy of Self-Similarity 

Otherwise you could claim “Alex looks more like Bob, than Bob does.” 

 

D(A,B) = 0 IIf A=B   Positivity (Separation) 

Otherwise there are objects in your world that are different, but you cannot tell apart. 

 

D(A,B)  D(A,C) + D(B,C) Triangular Inequality  

Otherwise you could claim “Alex is very like Bob, and Alex is very like Carl, but Bob 

is very unlike Carl.” 

 



Two Types of Clustering 

Hierarchical 

• Partitional algorithms: Construct various partitions and then 

evaluate them by some criterion (we will see an example called BIRCH) 

• Hierarchical algorithms: Create a hierarchical decomposition of 

the set of objects using some criterion 

 

Partitional 



Desirable Properties of a Clustering Algorithm 

• Scalability (in terms of both time and space) 

• Ability to deal with different data types  

• Minimal requirements for domain knowledge to 

determine input parameters 

• Able to deal with noise and outliers 

• Insensitive to order of input records 

• Incorporation of user-specified constraints 

• Interpretability and usability 



A Useful Tool for Summarizing Similarity Measurements  
In order to better appreciate and evaluate the examples given in the 

early part of this talk, we will now introduce the dendrogram. 
 

Root

Internal Branch

Terminal Branch

Leaf

Internal Node

Root

Internal Branch

Terminal Branch

Leaf

Internal Node

The similarity between two objects in a 

dendrogram is represented as the height of 

the lowest internal node they share. 



(Bovine:0.69395, (Spider Monkey 0.390, (Gibbon:0.36079,(Orang:0.33636,(Gorilla:0.17147,(Chimp:0.19268, 

Human:0.11927):0.08386):0.06124):0.15057):0.54939); 

There is only one dataset that can be 

perfectly clustered using a hierarchy…  



Business & Economy 

B2B Finance  Shopping Jobs 

Aerospace Agriculture…  Banking Bonds… Animals Apparel Career Workspace  

Note that hierarchies are 

commonly used to 

organize information, for 

example in a web portal. 

 

Yahoo’s hierarchy is 

manually created, we will 

focus on automatic 

creation of hierarchies in 

data mining. 



Pedro  (Portuguese) 
Petros (Greek), Peter  (English), Piotr  (Polish), Peadar 

(Irish), Pierre (French), Peder  (Danish), Peka 

(Hawaiian), Pietro (Italian), Piero (Italian Alternative), 

Petr (Czech), Pyotr (Russian) 

 

Cristovao (Portuguese) 
Christoph (German), Christophe (French), Cristobal 

(Spanish), Cristoforo (Italian), Kristoffer 

(Scandinavian), Krystof (Czech), Christopher (English) 

 

 

Miguel (Portuguese) 
Michalis (Greek), Michael (English), Mick (Irish!)  

A Demonstration of Hierarchical Clustering using String Edit Distance  



Pedro  (Portuguese/Spanish) 
Petros (Greek), Peter  (English), Piotr  (Polish), 

Peadar (Irish), Pierre (French), Peder  (Danish), 

Peka (Hawaiian), Pietro (Italian), Piero (Italian 

Alternative), Petr (Czech), Pyotr (Russian) 

 
 



ANGUILLA AUSTRALIA  
St. Helena & 

 Dependencies  

 

South Georgia & 

South Sandwich  

Islands U.K. 

Serbia &  

Montenegro 

(Yugoslavia) FRANCE NIGER INDIA IRELAND BRAZIL 

Hierarchal clustering can sometimes show 

patterns that are meaningless or spurious 
 
• For example, in this clustering, the tight grouping of Australia, 

Anguilla, St. Helena etc is meaningful, since all these countries are 

former UK colonies. 

 

• However the tight grouping of Niger and India is completely  

spurious, there is no connection between the two. 

http://images.google.com/imgres?imgurl=www.intheteam.com/images/club/50/brazil_flag.gif&imgrefurl=http://www.intheteam.com/home/home.asp%3FClubId%3D50&h=144&w=216&prev=/images%3Fq%3Dbrazil%2Bflag%26start%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN
http://www.theodora.com/maps/australia_maps.html
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 Dependencies  

 

South Georgia & 

South Sandwich  

Islands U.K. 

Serbia &  

Montenegro 

(Yugoslavia) FRANCE NIGER INDIA IRELAND BRAZIL 

• The flag of Niger is orange over white over green, with an orange disc on the 

central white stripe, symbolizing the sun. The orange stands the Sahara desert, 

which borders Niger to the north. Green stands for the grassy plains of the south 

and west and for the River Niger which sustains them. It also stands for fraternity 

and hope. White generally symbolizes purity and hope.  

 

• The Indian flag is a horizontal tricolor in equal proportion of deep saffron on the 

top, white in the middle and dark green at the bottom. In the center of the white 

band, there is a wheel in navy blue to indicate the Dharma Chakra, the wheel of 

law in the Sarnath Lion Capital. This center symbol or the 'CHAKRA' is a symbol 

dating back to 2nd century BC. The saffron stands for courage and sacrifice; the 

white, for purity and truth; the green for growth and auspiciousness. 

 

 

http://images.google.com/imgres?imgurl=www.intheteam.com/images/club/50/brazil_flag.gif&imgrefurl=http://www.intheteam.com/home/home.asp%3FClubId%3D50&h=144&w=216&prev=/images%3Fq%3Dbrazil%2Bflag%26start%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN
http://www.theodora.com/maps/australia_maps.html


We can look at the dendrogram to determine the “correct” number of 

clusters. In this case, the two highly separated subtrees are highly 

suggestive of two clusters. (Things are rarely this clear cut, unfortunately) 



Outlier 

One potential use of a dendrogram is to detect outliers 

The single isolated branch is suggestive of a 

data point that is very different to all others 



(How-to) Hierarchical Clustering 

The number of dendrograms with n 

leafs  = (2n -3)!/[(2(n -2)) (n -2)!] 

 
Number  Number of Possible 

of Leafs Dendrograms  

2  1 

3  3 

4  15 

5  105 

...  … 

10   34,459,425 

 

Since we cannot test all possible trees 

we will have to heuristic search of all 

possible trees. We could do this.. 

 

Bottom-Up (agglomerative): Starting 

with each item in its own cluster, find 

the best pair to merge into a new 

cluster. Repeat until all clusters are 

fused together.  

 

Top-Down (divisive): Starting with all 

the data in a single cluster, consider 

every possible way to divide the cluster 

into two. Choose the best division and 

recursively operate on both sides. 
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D(  ,  ) = 8 

D(  ,  ) = 1 

We begin with a distance 

matrix which contains the 

distances between every pair 

of objects in our database. 



Bottom-Up (agglomerative): 

Starting with each item in its own 

cluster, find the best pair to merge into 

a new cluster. Repeat until all clusters 

are fused together.  

… 

Consider all 

possible 

merges… 

Choose 

the best 
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We know how to measure the distance between two 

objects, but defining the distance between an object 

and a cluster, or defining the distance between two 

clusters is non obvious.   

• Single linkage (nearest neighbor): In this method the distance 

between two clusters is determined by the distance of the two closest objects 

(nearest neighbors) in the different clusters. 

• Complete linkage (furthest neighbor): In this method, the 

distances between clusters are determined by the greatest distance between any 

two objects in the different clusters (i.e., by the "furthest neighbors").  

• Group average linkage: In this method, the distance between two 

clusters is calculated as the average distance between all pairs of objects in the 

two different clusters. 

• Wards Linkage: In this method, we try to minimize the variance of the 

merged clusters 
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Summary of Hierarchal Clustering Methods 

 
• No need to specify the number of clusters in 

advance.  

• Hierarchal nature maps nicely onto human intuition 

for some domains 

• They do not scale well: time complexity of at least 

O(n2), where n is the number of total objects. 

• Like any heuristic search algorithms, local optima 

are a problem. 

• Interpretation of results is (very) subjective.  



 
Up to this point we have simply assumed that we can measure 

similarity, but 

How do we measure similarity?  

0.23 3 342.7 

Peter Piotr 



A generic technique for measuring similarity 

To measure the similarity between two objects, 

transform one of the objects into the other, and 

measure how much effort it took. The measure 

of effort becomes the distance measure. 

The distance between Patty and Selma. 
 Change dress color,   1 point 

 Change earring shape, 1 point 

 Change hair part,     1 point 

D(Patty,Selma) = 3 

The distance between Marge and Selma. 
 Change dress color,   1 point 

 Add earrings,         1 point 

 Decrease height,      1 point 

 Take up smoking,      1 point 

 Lose weight,          1 point 

D(Marge,Selma) = 5 

This is called the “edit 

distance” or the 

“transformation distance” 

 



Peter 

 

Piter 

 

Pioter 

 

Piotr 

Substitution (i for e)  

Insertion  (o)  

Deletion  (e)  

Edit Distance Example  

It is possible to transform any string Q into 

string C, using only Substitution, Insertion 

and Deletion. 

Assume that each of these operators has a 

cost associated with it. 

 

The similarity between two strings can be 

defined as the cost of the cheapest 

transformation from Q to C. 
 Note that for now we have ignored the issue of how we can find this cheapest 

transformation   

  

How similar are the names 

“Peter” and “Piotr”? 
Assume the following cost function  

Substitution 1 Unit 

Insertion  1 Unit 

Deletion  1 Unit 

 
D(Peter,Piotr) is 3 



Partitional Clustering 

• Nonhierarchical, each instance is placed in 

exactly one of K nonoverlapping clusters. 

• Since only one set of clusters is output, the user 

normally has to input the desired number of 

clusters K. 
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Algorithm k-means  

1. Decide on a value for k.  

2. Initialize the k cluster centers (randomly, if 

necessary).  

3. Decide the class memberships of the N objects by 

assigning them to the nearest cluster center.  

4. Re-estimate the k cluster centers, by assuming the 

memberships found above are correct.  

5. If none of the N objects changed membership in 

the last iteration, exit. Otherwise goto 3.  
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K-means Clustering: Step 1 
Algorithm: k-means, Distance Metric: Euclidean Distance 
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k3 
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K-means Clustering: Step 2 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 
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K-means Clustering: Step 3 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 
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k3 
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K-means Clustering: Step 4 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 



0

1

2

3

4

5

0 1 2 3 4 5

expression in condition 1

e
x
p

re
s
s
io

n
 i
n

 c
o

n
d

it
io

n
 2

K-means Clustering: Step 5 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 
k3 



Comments on the K-Means Method 

• Strength  

– Relatively efficient: O(tkn), where n is # objects, k is # clusters, 
and t  is # iterations. Normally, k, t << n. 

– Often terminates at a local optimum. The global optimum may 
be found using techniques such as: deterministic annealing and 
genetic algorithms 

• Weakness 

– Applicable only when mean is defined, then what about 
categorical data? 

– Need to specify k, the number of clusters, in advance 

– Unable to handle noisy data and outliers 

– Not suitable to discover clusters with non-convex shapes 



The K-Medoids Clustering Method 

• Find representative objects, called medoids, in clusters 

• PAM (Partitioning Around Medoids, 1987) 

– starts from an initial set of medoids and iteratively replaces 

one of the medoids by one of the non-medoids if it improves 

the total distance of the resulting clustering 

– PAM works effectively for small data sets, but does not scale 

well for large data sets 

 



EM Algorithm 

• Initialize K cluster centers 

• Iterate between two steps 

– Expectation step: assign points to clusters 

 

 

 

 

– Maximation step: estimate model parameters 
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Iteration 1 

 
The cluster 

means are 

randomly 

assigned  



Iteration 2 



Iteration 5 



Iteration 25 



Nearest Neighbor Clustering 
Not to be confused with Nearest Neighbor Classification 

• Items are iteratively merged into the 

existing clusters that are closest. 

• Incremental 

• Threshold, t, used to determine if items are 

added to existing clusters or a new cluster is 

created. 

What happens if the data is streaming… 
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New data point arrives… 

 

It is within the threshold for 

cluster 1, so add it to the 

cluster, and update cluster 

center. 
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2 

3 
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New data point arrives… 

 

It is not within the threshold 

for cluster 1, so create a new 

cluster, and so on.. 

1 

2 

3 

4 

Algorithm is highly order 

dependent… 

 

It is difficult to determine t in 

advance… 



Partitional Clustering Algorithms 
• Clustering algorithms have been designed to handle 

very large datasets 

• E.g. the Birch algorithm 

• Main idea: use an in-memory R-tree to store points that are 

being clustered 

• Insert points one at a time into the R-tree, merging a new 

point with an existing cluster if is less than some  distance 

away 

• If there are more leaf nodes than fit in memory, merge 

existing clusters that are close to each other 

• At the end of first pass we get a large number of clusters at 

the leaves of the R-tree 

 Merge clusters to reduce the number of clusters 



Partitional Clustering Algorithms 

• The Birch algorithm 

R10   R11  R12 

R1   R2  R3 R4   R5  R6 R7   R8  R9 

Data nodes containing points 

R10 R11 

R12 

We need to specify the number of clusters in advance, I have chosen 2 



Partitional Clustering Algorithms 

• The Birch algorithm 

R10   R11  R12 

{R1,R2}  R3 R4   R5  R6 R7   R8  R9 

Data nodes containing points 

R10 R11 

R12 



Partitional Clustering Algorithms 

• The Birch algorithm 

R10 R11 

R12 
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How can we tell the right number of clusters? 

 
In general, this is a unsolved problem. However there are many 

approximate methods. In the next few slides we will see an example. 

For our example, we will use the 

familiar katydid/grasshopper 

dataset. 

 

However, in this case we are 

imagining that we do NOT 

know the class labels. We are 

only clustering on the X and Y 

axis values.  



1 2 3 4 5 6 7 8 9 10 

 When k = 1, the objective function is 873.0 



1 2 3 4 5 6 7 8 9 10 

 When k = 2, the objective function is 173.1 



1 2 3 4 5 6 7 8 9 10 

 When k = 3, the objective function is 133.6 
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We can plot the objective function values for k equals 1 to 6… 

 

The abrupt change at k = 2, is highly suggestive of two clusters 

in the data. This technique for determining the number of 

clusters is known as “knee finding” or “elbow finding”. 

Note that the results are not always as clear cut as in this toy example 
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Linear Discriminant Analysis (LDA) 



LDA 

• Focuses on class separability and not on 

cluster shape 

• If finding out about cluster shape is the goal 

then LDA is not desirable 

 

Euclidian SSIM LDA 



t-SNE 

t-SNE = t-Distributed Stochastic Neighbor 

Embedding  

graph-based 

locals statistics preserving 

tends to isolate clusters well in the embedding 

but compresses them  





Visualization 

 

 Kernel-Based and Spectral Clustering 

Klaus Mueller 

 

Computer Science Department 

Stony Brook University 



Definition: Support Vectors 

SV

( ) T T

i i

i

g b b


   x w x x x

 A support-vector based linear discriminant function is:  

 Here we represent w by a set of support 

vectors xi 

x1 

x2 

x+ 

x+ 

x- 

Support Vectors 

( ) Tg b x w x

 A regular linear discriminant function is:  

Adapted from Jinwei Gu 



Non-Linear Cluster Separation 
 Clusters that are linearly separable work out great: 

0 x 

0 x 

x2 

0 x 

 But what to do when the separation is non-linear?  

 How about… mapping data to a higher-dimensional space: 

Adapted from www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  



Non-linear Separation:  Feature Space 

 General idea:  the original input space can be mapped to 

some higher-dimensional feature space where the 

training set is separable: 

Φ:  x → φ(x) 

Adapted from www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  



The Kernel Trick 

 With this mapping, our discriminant function is now: 

SV

( ) ( ) ( ) ( )T T

i i

i

g b b   


   x w x x x

 No need to know this mapping explicitly, because we only use 

the dot product of feature vectors. 

 A kernel function is defined as a function that corresponds to 

a dot product of two feature vectors in some expanded feature 

space: 

( , ) ( ) ( )T

i j i jK  x x x x

Adapted from Jinwei Gu 



The Kernel Trick 

 2-dimensional vectors x=[x1   x2];   

 

     let K(xi,xj)=(1 + xi
Txj)

2
, 

  

     Need to show that K(xi,xj) = φ(xi) 
Tφ(xj): 

   

     K(xi,xj)=(1 + xi
Txj)

2
, 

                           = 1+ xi1
2xj1

2 + 2 xi1xj1
 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2 

       = [1  xi1
2  √2 xi1xi2   xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2   xj2
2  √2xj1  √2xj2]  

       = φ(xi) 
Tφ(xj),    where φ(x) =  [1  x1

2  √2 x1x2   x2
2   √2x1  √2x2] 

 

 An example: 

Slide courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  



The Kernel Trick 

 Linear kernel: 

2

2
( , ) exp( )

2

i j

i jK



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x x
x x

( , ) T

i j i jK x x x x

( , ) (1 )T p

i j i jK  x x x x

0 1( , ) tanh( )T

i j i jK   x x x x

 Examples of commonly-used kernel functions: 

 Polynomial kernel: 

 Gaussian (Radial-Basis Function (RBF) ) kernel: 

 Sigmoid: 

 In general, functions that satisfy Mercer’s condition can be 

kernel functions. 

Adapted from Jinwei Gu 



Kernel k-Means 

Standard k-means algorithm: 

 

 

Kernel k-means: 

 

 

Distance function (expanded): 

 

 

Note that these are all dot products, so                                          
we can use a kernel:   

 



Computational Complexity 

Computational complexity is higher then with standard k-
means 

 

 

• first term is constant for a given point ai 

• second term is O(n) for each data point, so we get O(n2) for all points 

• third term is fixed per cluster 

• if K is sparse then the cost can be lower 

• also incur the cost for evaluation of the kernel 

• so the total cost is O(n2(t+m))  

             where t = number of iterations and m = number of dimensions   

 



Results 

 

Standard k-means 

 

 

 

Kernel k-means 

 

 

Note:  

• the use of kernels is very general  

• they can be used in many other clustering strategies 



Kernel PCA 

An extension of PCA to non-linear distributions 

• instead of directly doing a PCA, the n data points xi are mapped into a 
higher-dimensional feature space 

 

 

• then we solve the standard Eigenvalue problem: 



Kernel PCA 

This is equivalent to the set of n equations 

 

 

• it defines all n projections in the span  

Again we can use the kernel trick  

 

• which we can simplify to: 

 

 

The vector  for each principal component can be then 
obtained by extracting the eigenvectors of K 

• Kij = k(xi, xj) 



Results 



Graph Representations 

We may represent a dataset as a graph 

Clusters then form sub-graphs that can be separated by cuts 

 

 

 

 

 

A number of graph cutting algorithms have been                                
devised for the segmentation of images 

• Mincut, RatioCut, Ncut  

We will be using a spectral method to reduce complexity 

 

  

cluster 1 

cluster 2 



Some Graph Notations 



Graph Laplacian 

There are many options for the components of W 

• use all neighbors  fully connected graph  dense W 

• use k nearest neighbors only  sparse W 

• use a kernel to weight distances  also sparse W 

    this is also called the Affinity Matrix 

 

Build the Graph Laplacian 

• many metrics have been defined 

 

 

 

 

Find the Eigenvectors and values of L   

• some also use the adjacency matrix directly 

  

1/ 2 1/ 2

L D W

L D WD 
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



Eigenvectors of the Graph Laplacian 

The first Eigenvalues are zero  

• the number of zero-values indicates the number of clusters, k 

 

The next k Eigenvalues are non-zero  

• a small gap between these values corresponds to the graph having 
small cuts 

• a large gap means that the graph has no cuts 

 

Set a matrix E with the Eigenvectors forming the columns 

• an eigenvector can be interpreted as associating values (the 
coordinate entries of the eigenvector) with the vertices of the graph 

• these vertices correspond to rows in the matrix E 

     thus k-means clustering of these rows will cluster similar vertices 

 

 

 



Eigenvectors of the Graph Laplacian 

Cluster E into k clusters 

• assign a data point i to cluster j only if row i of E was assigned to 
cluster j 

• this finalizes the spectral clustering 

• in practice need to so some normalizations (omitted here) 

 

Illustrative case: 

• two isolated clusters 

      

 

Its adjacency matrix  

after clustering (stylized) 

Kernel-linked graph of  

2 isolated clusters 



Toy Example 

In the following slide: 

• 200 points sampled from 4 Gaussians 

• Gaussian kernel with =1 

• top two rows 10-connected graph, bottom two rows fully connected 

• in each two rows see un-normalized and normalized Laplacian 

Last row: 

• threshold the second eigenvector at 0, then the part below 0 
corresponds to clusters 1, 2, and the part above 0 to clusters 3, 4 

• thresholding the third eigenvector separates clusters 1, 4 from 
clusters 2, 3  

• thresholding the fourth eigenvector separates clusters 1, 3 from 
clusters 2, 4. 

• the first 4 eigenvectors carry all the information about the 4 clusters. 

Spectral clustering using k-means on the first 4 eigenvectors 
easily detects the correct 4 clusters 



Examples 



Examples 



Examples 
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Dataset exhibits complex 
cluster shapes 

 K-means performs very 
poorly in this space due bias 
toward dense spherical 
clusters. 
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given by two leading 
eigenvectors, clusters are 
trivial to separate. 

Spectral Clustering - Derek Greene 



How to Select k? 
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Eigengap: the difference between two consecutive eigenvalues. 

Most stable clustering is generally given by the value k that 
maximizes the expression 

1k k k    

 Choose k=2 

12max   k

Spectral Clustering - Derek Greene 


