
Visualization

 Data Analysis and Transformations

Klaus Mueller

Computer Science Department

Stony Brook University

Relationships

What do these different measures show?

Relationships

What do these different measures show?

Top: correlation

• noisiness, direction, strength of relationship

Bottom: regression

• slope, trend of relationship

These are complementary measures

Linear vs. Non-Linear Relationships

Correlation and regression are not reliable here

• defined for linear relationships

• visualization can help here

• same goes for outliers

• recall Anscombe’s quartet

Correlation

Pearson’s correlation coefficient

Sample correlation (assume n observations):

[()()](,)
(,)

x y

x y x y

E X YCov X Y
Corr X Y

 

   

 
 

1

2 2

1 1

()()

() ()

n

i i

i
xy

n n

i i

i i

x x y y

r

x x y x



 

 



 



 

Correlation Matrix

just value distribution (scatterplot matrix)

Regression

Helps to understand how a dependent variable changes when
any one of the independent variables is varied

• can be used for prediction and forecasting

Assumptions

• the errors are random and normally distributed,

• with mean = zero, and

• constant variance 2, independent and uniform

• the errors are independent of one another

Output:

• regression model :

• get the coefficients by solving the least squares problem:

• gives rise to a set of normal equations (one for each coefficient)

0 1 2 ...i i i iy x x       

2

0 1 2((...)) 0i i i

i

y x x  



   




Goodness of Fit

Coefficient r2:

• proportion of variation in Y “explained” by the regression on X

There is much more on this

• confidence analysis, sensitivity analysis, F-test, ANOVA

• multivariate statistics  generalize all to matrix notation

• read a stats book (it’s good for you )

2

1

^
2

1

^
2

1

Total sum of squares: () 1

Regression sum of squares: () 1

Error sum of squares: () 2

Coefficient of determinat

n

i T

i

n

i R

i

n

i i E

i

SST Y Y df n

SSR Y Y df

SSE Y Y df n







   

  

   







2 2exp var
ion: 0 1

var

lained iation SSR
r r

total iation SST
   

Residual Analysis

Check out the non-uniform errors

• where does the model not fit?

• are there outliers, and where?

• time to do some plotting

• time for visualization…

0 1 2plot: ((...)i i iy x x    

Visualization of Regression results

Visualization may also reveal trends

• extrapolations

• recall Challenger disaster plot

High Dimensional Data

dimensions >> 3

Problems:

• hard to visualize

• massive storage

• hard to analyze (clustering and classification more efficient in low-D)

Solution:

• reduce number of dimensions (but control loss)

• stretch N-D space somehow into 2D or 3D

• analyze (discover) structure, organize

We will discuss:

• principal component analysis (PCA)  reduce dimensions

• multi-dimensional scaling (MDS)  stretch space

• clustering  provide structure

• create hierarchies  provide structure

• self-organizing maps  provide structure

• and others

PCA: Algebraic Interpretation

Given m points in a n dimensional space, for large n, how
does one project onto a low dimensional space while
preserving broad trends in the data and allowing it to be
visualized?

PCA: Algebraic Interpretation – 1D

Given m points in a n dimensional space, for large n, how
does one project onto a 1 dimensional space?

Choose a line that fits the data so the points are spread out
well along the line

PCA: Algebraic Interpretation – 1D

Given m points in a n dimensional space, for large n, how
does one project onto a 1 dimensional space?

Choose a line that fits the data so the points are spread out
well along the line

Formally, minimize sum of squares of distances to the line.

Why sum of squares? Because it allows fast minimization,
assuming the line passes through 0

PCA: Algebraic Interpretation – 1D

Minimizing sum of squares of distances to the line is the same
as maximizing the sum of squares of the projections on that
line, thanks to Pythagoras.

PCA: Algebraic Interpretation – 1D

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st Principal

Component, y1

2nd Principal

Component, y2

PCA Scores

PCA Eigenvalues

4.0 4.5 5.0 5.5 6.0
2

3

4

5

λ1
λ2

PCA: Solution

Also known to engineers as the
Karhunen-Loéve Transform (KLT)

Rotate data points to align successive axes with directions of
greatest variance

• subtract mean from data

• normalize variance along each direction, and reorder according to the variance
magnitude from high to low

• normalized variance direction = principal component

Eigenvectors of system’s Covariance Matrix C

Permute eigenvectors x so they are in descending order of
eigenvalues l

Solve via QR factorization or LU decomposition to get

• Q: matrix with Eigenvectors,  diagonal matrix with Eigenvalues

1
()() () 0

1

n
T

i i i

i

x x
n

  l    


C C I ix

1Q Q C

Example

Before PCA

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8 10 12

Variable X1

V
a
ri

a
b

le
 X

2

PC 1

PC 2

Example

l1 = 9.8783 l2 = 3.0308 Trace = 12.9091

• PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8 10 12

PC 1

P
C

 2

PCA Applied to Faces

Some familiar faces…

PCA Applied to Faces

We can reconstruct each face as a linear combination of
“basis” faces, or Eigenfaces [M. Turk and A. Pentland
(1991)]

+

Average Face

Eigenfaces

Reconstruction using PCA

90% variance is captured
by the first 50
eigenvectors

Reconstruct existing
faces using only 50
basis images

We can also generate
new faces by
combining
eigenvectors with
different weights

V0

for n lights

x ∑

PCA Applied to Human Body Shapes

Similar concepts can also be used for human body shapes

• see Allen, Curless, Popovic, “The Space of Human Body Shapes”,
SIGGRAPH 2003.

• interpolation in PCA space allows generation of plausible new body
shapes

Store additional data (age, weight, height, etc.) with each body

• learn the derivative function:  data   body

• use this derivative function to predict  data   given body

Multidimensional Scaling (MDS)

Maps the distances between observations from N-D into a
lower-D space (say 2D)

Attempts to ensure that differences between pairs of points in
this reduced space match, as closely as possible, the true-
ordered differences between the observations.

Algorithm:

• compute the pair-wise Euclidian distance Dij

• order these in terms of magnitude

• minimize energy function to get dij in lower-D space

MDS: Specifics

Specify input as a dissimilarity matrix M, containing pairwise
dissimilarities between N-dimensional data points

Finds the best D-dimensional linear parameterization
compatible with M (down to rigid-body transform + possible
reflection)

(in other words, output a projection of data in D-dimensional
space where the pairwise distances match the original
dissimilarities as faithfully as possible)

MDS is related to PCA when distances are Euclidian, but

• PCA provides low dimensional images of data points

• inadequacy of PCA: clustered structures may disappear

MDS projects data points to low dimensional images AND

• respect constraints:

• keep informational content

• keep similarity / dissimilarity relationships

MDS: Applications

Dissimilarities can be metric or non-metric

Useful when absolute measurements are unavailable

• uses relative measurements

Computation is invariant to dimensionality of data

MDS: Algorithm

MDS: Algorithm

MDS: Algorithm

Force-Directed Methods

Force-directed methods can remove remaining
occlusions/overlaps in the 2D projection space:

• forces are used to position clusters according to distance (and
variance) in N-space

• insert springs within each node

• the length of the spring encodes the desired node distance

• starting at an initial configuration, iteratively move nodes until an
energy minimum is reached

An Example: Map of the US

Chicago Raleigh Boston Seattle S.F. Austin Orlando

Chicago 0

Raleigh 641 0

Boston 851 608 0

Seattle 1733 2363 2488 0

S.F. 1855 2406 2696 684 0

Austin 972 1167 1691 1764 1495 0

Orlando 994 520 1105 2565 2458 1015 0

Distances calculated with geobytes.com/CityDistanceTool

Suppose you know the distances between a bunch of cities…

Result of MDS

Actual Plot of Cities

Manifold Learning: Isomap

by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000

Tries to unwrap a high-dimensional surface (A)  manifold

• noisy points could be averaged first and projected onto the manifold

Algorithm

• construct neighborhood graph G  (B)

• for each pair of points in G compute the shortest path distances 
geodesic distances

• fill similarity matrix with these geodesic distances

• embed (layout) in low-D (2D) with MDS  (C)

(C) (B) (A)

Manifold Learning: Locally Linear Embedding (LLE)

by: S. Roweis, L. Saul, Science, 2000

Based on simple geometric intuitions.

• suppose the data consist of N real-valued vectors Xi, each of
dimensionality D

• each data point and its neighbors are expected to lie on or close to a
locally linear patch of the manifold

Low dimensional Manifold High dimensional Manifold

LLE Overview

from: “Nonlinear Dimensionality Reduction by Locally Linear Embedding”

S. Roweis, L. Saul

LLE Details

Steps:

• assign K neighbors to each data point

• compute the weights Wij that best linearly reconstruct the data point
from its K neighbors, solving the constrained least-squares problem

 έ(W) =

• compute the low-dimensional embedding vectors best
reconstructed by Wij

iX


iY


 
j

jij

i

i XWX 2||


 
i j

jijYWYY 2||)(


Self-Organizing Maps (SOM)

Introduced by Teuvo Kohonen

• unsupervised learning and clustering algorithm

• has advantages compared to hierarchical clustering

• often realized as an artificial neural network

SOMs group the data

• they perform a nonlinear projection from N-dimensional input space
onto two-dimensional visualization space

• they provide a useful topological arrangement of information objects
in order to display clusters of similar objects in information space

SOM: Algorithm

Consists of a two-dimensional network of neurons, typically
arranged on a regular lattice.

• each cell is associated with a single randomly initialized N-
dimensional reference vector.

Training uses a set of input vectors several times:

• for each input vector search the map for the most similar reference
vector, called the winning vector

• update the winning vector such that it more closely represents the
input vector

• also adjust the reference vectors in the neighborhood around the
winning vector in response to the actual input vector

After the training:

• reference vectors in adjacent cells represent input vectors which are
close (i.e., similar) in information space

SOM Examples: Galaxies

Presentation of documents where similar ones cluster together

PNNL

SOM Examples: Webtheme

PNNL

SOM Examples: Themescape

Uses 3D representation: height represents density or number of documents in region

PNNL

SOM / MDS Example: VxInsight (Sandia)

SOM Examples: Websom

Self-organizing map of Net

newsgroups and postings

(websom.hut.fi)

Non-Parametric Statistics

Distribution free

• does not rely on assumptions that the data are drawn from a given
probability distribution (such as a normal distribution)

Often used tools:

• histograms (partitions space into bins)

• kernel density estimation (better than histograms  continuous)

• regression based on kernels, splines, wavelets, etc.

• data envelope analysis

Parzen Window

Estimates density from discrete observations

• smooth (blur) with a smooth kernel function (such as a Gaussian)

window width

number of points

Parzen Window

Think of every data point as a Gaussian kernel

• superposition creates density “humps”

• varying the kernel size yields multi-scale data decompositions

from Duda, Hart, Stork: Pattern Classification

Analogous to Human Vision

Gaussian standard deviation doubles for each image

