Visualization

Data Analysis and Transformations

Klaus Mueller

Computer Science Department
Stony Brook University

Relationships

What do these different measures show?

Relationships

What do these different measures show?

Top: correlation

- noisiness, direction, strength of relationship

Bottom: regression

- slope, trend of relationship

These are complementary measures

Linear vs. Non-Linear Relationships

Correlation and regression are not reliable here

- defined for linear relationships
- visualization can help here

- same goes for outliers
- recall Anscombe's quartet

Correlation

Pearson's correlation coefficient

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}}=\frac{E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right]}{\sigma_{x} \sigma_{y}}
$$

Sample correlation (assume n observations):

$$
r_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{x}\right)^{2}}}
$$

Correlation Matrix

	MO	FP	MP	IM	IC	FM	FE	FI	SPC	DSC	DST
MO	1.00										
FP	$0.31{ }^{\text {a }}$	1.00									
MP	$0.32{ }^{\text {a }}$	$0.71{ }^{\text {a }}$	1.00								
IM	$0.36{ }^{\text {a }}$	$0.12^{\text {c }}$	$0.14{ }^{\text {c }}$	1.00							
IC	$0.39^{\text {a }}$	$0.18^{\text {b }}$	$0.21{ }^{\text {a }}$	$0.62{ }^{\text {a }}$	1.00						
FM	$0.26{ }^{\text {a }}$	$0.21{ }^{\text {a }}$	$0.14{ }^{\text {c }}$	$0.30^{\text {a }}$	$0.27{ }^{\text {a }}$	1.00					
FE	$0.47^{\text {a }}$	$0.21{ }^{\text {a }}$	$0.18^{\text {b }}$	$0.38{ }^{\text {a }}$	$0.28{ }^{\text {a }}$	$0.24{ }^{\text {a }}$	1.00				
FI	$0.53{ }^{\text {a }}$	$0.26{ }^{\text {a }}$	$0.22^{\text {a }}$	$0.36{ }^{\text {a }}$	$0.37{ }^{\text {a }}$	$0.29{ }^{\text {a }}$	$0.47{ }^{\text {a }}$	1.00			
SPC	$0.32^{\text {a }}$	$0.22^{\text {a }}$	$0.31{ }^{\text {a }}$	$0.51{ }^{\text {a }}$	$0.47^{\text {a }}$	$0.32^{\text {a }}$	$0.37{ }^{\text {a }}$	$0.35{ }^{\text {a }}$	1.00		
DSC	$-0.12^{\text {c }}$	$0.03{ }^{\text {c }}$	$0.05{ }^{\text {c }}$	$0.17{ }^{\text {b }}$	$0.08{ }^{\text {c }}$	$0.18^{\text {b }}$	$-0.05^{\text {c }}$	$0.06{ }^{\text {c }}$	$0.01{ }^{\text {c }}$	1.00	
DST	$-0.02^{\text {c }}$	$-0.01^{\text {c }}$	$0.05{ }^{\text {c }}$	$0.24{ }^{\text {a }}$	$0.14{ }^{\text {c }}$	$0.05{ }^{\text {c }}$	$-0.05^{\text {c }}$	$0.05{ }^{\text {c }}$	$0.05{ }^{\text {c }}$	$0.56{ }^{\text {a }}$	1.00
DM	$0.05{ }^{\text {c }}$	0.144	$0.136^{\text {c }}$	$0.199^{\text {a }}$	$0.169^{\text {b }}$	$0.247^{\text {a }}$	$0.08{ }^{\text {c }}$	$0.11^{\text {c }}$	$0.14{ }^{\text {c }}$	$0.46{ }^{\text {a }}$	$0.71^{\text {a }}$

Climatic predictors				
WetDays				
	TempJuly			
		TempJan		
			TempAnn	
				RHJuly

distribution (scatterplot matrix)

Regression

Helps to understand how a dependent variable changes when any one of the independent variables is varied

- can be used for prediction and forecasting

Assumptions

- the errors are random and normally distributed,
- with mean = zero, and
- constant variance σ^{2}, independent and uniform
- the errors are independent of one another

Output:

- regression model : $y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}+\ldots+\varepsilon_{i}$
- get the coefficients by solving the least squares problem:

$$
\frac{\partial}{\partial \beta} \sum_{i}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i} \ldots\right)\right)^{2}=0
$$

- gives rise to a set of normal equations (one for each coefficient)

Goodness of Fit

Total sum of squares: $\quad S S T=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \quad d f_{T}=n-1$
Regression sum of squares: $\quad S S R=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \quad d f_{R}=1$
Error sum of squares:

$$
S S E=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2} \quad d f_{E}=n-2
$$

Coefficient of determination: $\quad r^{2}=\frac{\operatorname{explained} \text { var iation }}{\text { total var iation }}=\frac{S S R}{S S T} \quad 0 \leq r^{2} \leq 1$
Coefficient r^{2} :

- proportion of variation in Y "explained" by the regression on X

There is much more on this

- confidence analysis, sensitivity analysis, F-test, ANOVA
- multivariate statistics \rightarrow generalize all to matrix notation
- read a stats book (it's good for you ©)

Residual Analysis

Check out the non-uniform errors

- where does the model not fit?
- are there outliers, and where?
- time to do some plotting
- time for visualization...

$$
\text { plot: } \quad\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i} \ldots\right)\right.
$$

Visualization of Regression results

Visualization may also reveal trends

- extrapolations
- recall Challenger disaster plot

High Dimensional Data

\# dimensions >> 3

Problems:

- hard to visualize
- massive storage
- hard to analyze (clustering and classification more efficient in low-D)

Solution:

- reduce number of dimensions (but control loss)
- stretch N-D space somehow into 2D or 3D
- analyze (discover) structure, organize

We will discuss:

- principal component analysis (PCA) \rightarrow reduce dimensions
- multi-dimensional scaling (MDS) \rightarrow stretch space
- clustering \rightarrow provide structure
- create hierarchies \rightarrow provide structure
- self-organizing maps \rightarrow provide structure
- and others

PCA: Algebraic Interpretation

Given m points in a n dimensional space, for large n, how does one project onto a low dimensional space while preserving broad trends in the data and allowing it to be visualized?

PCA: Algebraic Interpretation - 1D

Given m points in a n dimensional space, for large n, how does one project onto a 1 dimensional space?

Choose a line that fits the data so the points are spread out well along the line

PCA: Algebraic Interpretation - 1D

Given m points in a n dimensional space, for large n, how does one project onto a 1 dimensional space?

Choose a line that fits the data so the points are spread out well along the line

PCA: Algebraic Interpretation - 1D

Formally, minimize sum of squares of distances to the line.

Why sum of squares? Because it allows fast minimization,

PCA: Algebraic Interpretation - 1D

Minimizing sum of squares of distances to the line is the same as maximizing the sum of squares of the projections on that line, thanks to Pythagoras.

PCA Scores

PCA Eigenvalues

PCA: Solution

Also known to engineers as the Karhunen-Loéve Transform (KLT)

Rotate data points to align successive axes with directions of greatest variance

- subtract mean from data
- normalize variance along each direction, and reorder according to the variance magnitude from high to low
- normalized variance direction = principal component

Eigenvectors of system's Covariance Matrix \boldsymbol{C}
Permute eigenvectors \boldsymbol{x} so they are in descending order of eigenvalues λ

$$
\mathbf{C}=\frac{1}{n-1} \sum_{i}^{n}\left(\bar{x}_{i}-\mu\right)\left(\bar{x}_{i}-\mu\right)^{T} \quad\left(\mathbf{C}-\lambda_{i} \mathbf{I}\right) \boldsymbol{x}_{i}=0
$$

Solve via $Q R$ factorization or $L U$ decomposition to get $C=Q \Lambda Q^{-1}$

- Q: matrix with Eigenvectors, Λ diagonal matrix with Eigenvalues

Example

Before PCA

Example

$\lambda_{1}=9.8783 \quad \lambda_{2}=3.0308$ Trace $=12.9091$

- PC 1 displays ("explains") 9.8783/12.9091 = 76.5\% of total variance

PCA Applied to Faces

Some familiar faces...

PCA Applied to Faces

We can reconstruct each face as a linear combination of "basis" faces, or Eigenfaces [M. Turk and A. Pentland (1991)]

Reconstruction using PCA

90% variance is captured by the first 50 eigenvectors

Reconstruct existing faces using only 50 basis images

We can also generate new faces by combining eigenvectors with different weights

reconstructed with 50 eigenfaces

PCA Applied to Human Body Shapes

Similar concepts can also be used for human body shapes

- see Allen, Curless, Popovic, "The Space of Human Body Shapes", SIGGRAPH 2003.
- interpolation in PCA space allows generation of plausible new body shapes
Store additional data (age, weight, height, etc.) with each body
- learn the derivative function: Δ data $\rightarrow \Delta$ body
- use this derivative function to predict Δ data $\rightarrow \Delta$ given body

Multidimensional Scaling (MDS)

Maps the distances between observations from N-D into a lower-D space (say 2D)

Attempts to ensure that differences between pairs of points in this reduced space match, as closely as possible, the trueordered differences between the observations.

Algorithm:

- compute the pair-wise Euclidian distance D_{ij}
- order these in terms of magnitude
- minimize energy function to get d_{ij} in lower-D space

$$
E=\frac{\sum_{r=1}^{N} \sum_{s=1}^{r-1} \frac{\left(D_{r s}-d_{r s}\right)^{2}}{D_{r s}}}{\sum_{r=1}^{N} \sum_{s=1}^{r-1} D_{r s}}
$$

MDS: Specifics

Specify input as a dissimilarity matrix M, containing pairwise dissimilarities between N -dimensional data points

Finds the best D-dimensional linear parameterization compatible with M (down to rigid-body transform + possible reflection)
(in other words, output a projection of data in D-dimensional space where the pairwise distances match the original dissimilarities as faithfully as possible)

MDS is related to PCA when distances are Euclidian, but

- PCA provides low dimensional images of data points
- inadequacy of PCA: clustered structures may disappear

MDS projects data points to low dimensional images AND

- respect constraints:
- keep informational content
- keep similarity / dissimilarity relationships

MDS: Applications

Dissimilarities can be metric or non-metric
Useful when absolute measurements are unavailable

- uses relative measurements

Computation is invariant to dimensionality of data

MDS: Algorithm

- Task:
- Find that configuration of image points whose pairwise distances are most similar to the original inter-point distances !!!
- Formally:
- Define: $D_{i j}=\left\|x_{i}-x_{j}\right\|_{D} \quad d_{i j}=\left\|y_{i}-y_{j}\right\|_{d}$
- Claim:

$$
\mathrm{D}_{\mathrm{ij}} \equiv \mathrm{~d}_{\mathrm{ij}} \quad \forall \mathrm{i}, \mathrm{j} \in[1, \mathrm{n}]
$$

- In general: an exact solution is not possible !!!
- Inter Point distances \rightarrow invariance features

MDS: Algorithm

Strategy (of metric MDS):

iterative procedure to find a good configuration of image points

1) Initialization
\rightarrow Begin with some (arbitrary) initial configuration

- 2) Alter the image points and try to find a configuration of points that minimizes the following sum-of-squares error function:

$$
E\left[y_{1}, \ldots, y_{n}\right]=\frac{1}{\sum_{\mathrm{i}<\mathrm{j}} \mathrm{D}_{\mathrm{ij}}} \sum_{\mathrm{i}<\mathrm{j}} \frac{\left(\mathrm{~d}_{\mathrm{ij}}-\mathrm{D}_{\mathrm{ij}}\right)^{2}}{\mathrm{D}_{\mathrm{ij}}}=\frac{1}{\sum_{i<j} \mathrm{D}_{\mathrm{ij}}} \sum_{j} \sum_{i<j} \frac{\left(\left\|y_{i}-y_{j}\right\|-\mathrm{D}_{\mathrm{ij}}\right)^{2}}{\mathrm{D}_{\mathrm{ij}}}
$$

$$
\nabla_{y_{k}}\left(E\left[y_{1}, \ldots, y_{n}\right]\right)
$$

MDS: Algorithm

Force-Directed Methods

Force-directed methods can remove remaining occlusions/overlaps in the 2D projection space:

- forces are used to position clusters according to distance (and variance) in N -space
- insert springs within each node
- the length of the spring encodes the desired node distance
- starting at an initial configuration, iteratively move nodes until an energy minimum is reached

An Example: Map of the US

Suppose you know the distances between a bunch of cities...

	Chicago	Raleigh	Boston	Seattle	S.F.	Austin	Orlando
Chicago	0						
Raleigh	641	0					
Boston	851	608	0				
Seattle	1733	2363	2488	0	0		
S.F.	1855	2406	2696	684	1495	0	
Austin	972	1167	1691	1764	2565	2458	1015

Result of MDS

Actual Plot of Cities

Manifold Learning: Isomap

by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000
(A)

(B)

(C)

Tries to unwrap a high-dimensional surface $(A) \rightarrow$ manifold

- noisy points could be averaged first and projected onto the manifold

Algorithm

- construct neighborhood graph $\mathrm{G} \rightarrow$ (B)
- for each pair of points in G compute the shortest path distances \rightarrow geodesic distances
- fill similarity matrix with these geodesic distances
- embed (layout) in low-D (2D) with MDS \rightarrow (C)

Manifold Learning: Locally Linear Embedding (LLE)

by: S. Roweis, L. Saul, Science, 2000
Based on simple geometric intuitions.

- suppose the data consist of N real-valued vectors X_{i}, each of dimensionality D
- each data point and its neighbors are expected to lie on or close to a locally linear patch of the manifold

High dimensional Manifold
Low dimensional Manifold

LLE Overview

from: "Nonlinear Dimensionality Reduction by Locally Linear Embedding" S. Roweis, L. Saul

LLE Details

Steps:

- assign K neighbors to each data point \vec{X}_{i}
- compute the weights W_{ij} that best linearly reconstruct the data point from its K neighbors, solving the constrained least-squares problem

$$
\dot{\varepsilon}(W)=\sum_{i}\left|\vec{X}_{i}-\sum_{j} W_{i j} \vec{X}_{j}\right|^{2}
$$

- compute the low-dimensional embedding vectors \bar{Y}_{i} best reconstructed by W_{ij}

$$
\Phi(Y)=\sum_{i}\left|\vec{Y}-\sum_{j} W_{i j} \vec{Y}_{j}\right|^{2}
$$

Self-Organizing Maps (SOM)

Introduced by Teuvo Kohonen

- unsupervised learning and clustering algorithm
- has advantages compared to hierarchical clustering
- often realized as an artificial neural network

SOMs group the data

- they perform a nonlinear projection from N -dimensional input space onto two-dimensional visualization space
- they provide a useful topological arrangement of information objects in order to display clusters of similar objects in information space

SOM: Algorithm

Consists of a two-dimensional network of neurons, typically arranged on a regular lattice.

- each cell is associated with a single randomly initialized N dimensional reference vector.
Training uses a set of input vectors several times:
- for each input vector search the map for the most similar reference vector, called the winning vector
- update the winning vector such that it more closely represents the input vector
- also adjust the reference vectors in the neighborhood around the winning vector in response to the actual input vector
After the training:
- reference vectors in adjacent cells represent input vectors which are close (i.e., similar) in information space

SOM Examples: Galaxies

Presentation of documents where similar ones cluster together PNNL

SOM Examples: Webtheme

SOM Examples: Themescape

PNNL
Uses 3D representation: height represents density or number of documents in region

SOM / MDS Example: VxInsight (Sandia)

SOM Examples: Websom

Self-organizing map of Net newsgroups and postings (websom.hut.fi)

Non-Parametric Statistics

Distribution free

- does not rely on assumptions that the data are drawn from a given probability distribution (such as a normal distribution)

Often used tools:

- histograms (partitions space into bins)
- kernel density estimation (better than histograms \rightarrow continuous)
- regression based on kernels, splines, wavelets, etc.
- data envelope analysis

Histogram of x

Parzen Window

Estimates density from discrete observations

- smooth (blur) with a smooth kernel function (such as a Gaussian)
number of points

\longleftarrow window width

Parzen Window

Think of every data point as a Gaussian kernel

- superposition creates density "humps"

- varying the kernel size yields multi-scale data decompositions

from Duda, Hart, Stork: Pattern Classification

Analogous to Human Vision

Gaussian standard deviation doubles for each image

