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Relationships 

What do these different measures show?  
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What do these different measures show? 

 

 

 

 

 

Top: correlation 

• noisiness, direction, strength of relationship 

Bottom: regression 

• slope, trend of relationship 

These are complementary measures 

 



Linear vs. Non-Linear Relationships 

Correlation and regression are not reliable here 

• defined for linear relationships 

• visualization can help here 

 

 

 

 

 

 

 

• same goes for outliers 

• recall Anscombe’s quartet  



Correlation 

Pearson’s correlation coefficient 

 

 

 

Sample correlation (assume n observations): 
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Correlation Matrix 

just value distribution (scatterplot matrix) 



Regression 

Helps to understand how a dependent variable changes when 
any one of the independent variables is varied 

• can be used for prediction and forecasting 

Assumptions 

• the errors are random and normally distributed, 

• with mean = zero, and 

• constant variance 2, independent and uniform 

• the errors are independent of one another 

Output: 

• regression model :  

 

• get the coefficients by solving the least squares problem: 

 

 

 

• gives rise to a set of normal equations (one for each coefficient) 
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Goodness of Fit 

 

 

 

 

 

 

Coefficient r2:  

• proportion of variation in Y  “explained” by the regression on X  

There is much more on this 

• confidence analysis, sensitivity analysis, F-test, ANOVA 

• multivariate statistics  generalize all to matrix notation 

• read a stats book (it’s good for you ) 
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Residual Analysis 

Check out the non-uniform errors 

• where does the model not fit? 

• are there outliers, and where? 

• time to do some plotting 

• time for visualization… 
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Visualization of Regression results 

Visualization may also reveal trends 

• extrapolations 

• recall Challenger disaster plot 



High Dimensional Data 

# dimensions >> 3 

Problems: 

• hard to visualize 

• massive storage 

• hard to analyze (clustering and classification more efficient in low-D) 

Solution: 

• reduce number of dimensions (but control loss) 

• stretch N-D space somehow into 2D or 3D 

• analyze (discover) structure, organize 

We will discuss: 

• principal component analysis (PCA)  reduce dimensions 

• multi-dimensional scaling (MDS)  stretch space 

• clustering  provide structure 

• create hierarchies  provide structure 

• self-organizing maps  provide structure 

• and others 



PCA: Algebraic Interpretation 

Given m points in a n dimensional space, for large n, how 
does one project onto a low dimensional space while 
preserving broad trends in the data and allowing it to be 
visualized? 



PCA: Algebraic Interpretation – 1D 

Given m points in a n dimensional space, for large n, how 
does one project onto a 1 dimensional space? 

 

 

 

 

 

 

 

Choose a line that fits the data so the points are spread out 
well along the line 



PCA: Algebraic Interpretation – 1D 

Given m points in a n dimensional space, for large n, how 
does one project onto a 1 dimensional space? 

 

 

 

 

 

 

 

Choose a line that fits the data so the points are spread out 
well along the line 



Formally, minimize sum of squares of distances to the line. 

 

 

   

 

 

 

 

 

Why sum of squares? Because it allows fast minimization, 
assuming the line passes through 0 

PCA: Algebraic Interpretation – 1D 



Minimizing sum of squares of distances to the line is the same 
as maximizing the sum of squares of the projections on that 
line, thanks to Pythagoras. 

 

   

 

 

 

 

 

PCA: Algebraic Interpretation – 1D 
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PCA Eigenvalues 
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PCA: Solution 

Also known to engineers as the  
Karhunen-Loéve Transform (KLT) 

Rotate data points to align successive axes with directions of 
greatest variance 

• subtract mean from data 

• normalize variance along each direction, and reorder according to the variance 
magnitude from high to low 

• normalized variance direction = principal component 

Eigenvectors of system’s Covariance Matrix C 

Permute eigenvectors x so they are in descending order of 
eigenvalues l 

 

Solve via QR factorization or LU decomposition to get 

• Q: matrix with Eigenvectors,  diagonal matrix with Eigenvalues  
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Example 

Before PCA 
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Example 

l1 = 9.8783  l2 = 3.0308  Trace = 12.9091 

• PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance 
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PCA Applied to Faces 

Some familiar faces… 



PCA Applied to Faces 

We can reconstruct each face as a linear combination of 
“basis” faces, or Eigenfaces [M. Turk and A. Pentland 
(1991)] 

+ 

Average Face 

Eigenfaces 



Reconstruction using PCA 

90% variance is captured 
by the first 50 
eigenvectors 

Reconstruct existing 
faces using only 50 
basis images 

We can also generate 
new faces by 
combining 
eigenvectors with 
different weights 

V0 

for n lights 

x ∑ 



PCA Applied to Human Body Shapes 

Similar concepts can also be used for human body shapes 

• see Allen, Curless, Popovic, “The Space of Human Body Shapes”, 
SIGGRAPH 2003. 

• interpolation in PCA space allows generation of plausible new body 
shapes 

Store additional data (age, weight, height, etc.) with each body 

• learn the derivative function:  data   body 

• use this derivative function to predict  data   given body 



Multidimensional Scaling (MDS) 

Maps the distances between observations from N-D into a 
lower-D space (say 2D) 

Attempts to ensure that differences between pairs of points in 
this reduced space match, as closely as possible, the true-
ordered differences between the observations. 

Algorithm: 

• compute the pair-wise Euclidian distance Dij 

• order these in terms of magnitude 

• minimize energy function to get dij in lower-D space 

 

 



MDS: Specifics 

Specify input as a dissimilarity matrix M, containing pairwise 
dissimilarities between N-dimensional data points 

Finds the best D-dimensional linear parameterization 
compatible with M (down to rigid-body transform + possible 
reflection) 

(in other words, output a projection of data in D-dimensional 
space where the pairwise distances match the original 
dissimilarities as faithfully as possible) 

MDS is related to PCA when distances are Euclidian, but 

• PCA provides low dimensional images of data points 

• inadequacy of PCA: clustered structures may disappear 

MDS projects data points to low dimensional images AND 

•  respect constraints: 

•  keep informational content 

•  keep similarity / dissimilarity relationships 



MDS: Applications 

Dissimilarities can be metric or non-metric 

Useful when absolute measurements are unavailable 

• uses relative measurements 

Computation is invariant to dimensionality of data 

 

 

 



MDS: Algorithm 



MDS: Algorithm 



MDS: Algorithm 



Force-Directed Methods 

Force-directed methods can remove remaining 
occlusions/overlaps in the 2D projection space: 

• forces are used to position clusters according to distance (and 
variance) in N-space 

• insert springs within each node 

• the length of the spring encodes the desired node distance 

• starting at an initial configuration, iteratively move nodes until an 
energy minimum is reached 

 



An Example: Map of the US 

Chicago Raleigh Boston Seattle S.F. Austin Orlando 

Chicago 0 

Raleigh 641 0 

Boston 851 608 0 

Seattle 1733 2363 2488 0 

S.F. 1855 2406 2696 684 0 

Austin 972 1167 1691 1764 1495 0 

Orlando 994 520 1105 2565 2458 1015 0 

Distances calculated with geobytes.com/CityDistanceTool 

Suppose you know the distances between a bunch of cities… 



Result of MDS 



Actual Plot of Cities 



Manifold Learning: Isomap 

by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000 

 

 

 

 

Tries to unwrap a high-dimensional surface (A)  manifold 

• noisy points could be averaged first and projected onto the manifold 

Algorithm 

• construct neighborhood graph G  (B) 

• for each pair of points in G compute the shortest path distances  
geodesic distances 

• fill similarity matrix with these geodesic distances 

• embed (layout) in low-D (2D) with MDS  (C) 

 

 

(C) (B) (A) 



Manifold Learning: Locally Linear Embedding (LLE) 

by: S. Roweis, L. Saul, Science, 2000 

Based on simple geometric intuitions. 

• suppose the data consist of N real-valued vectors Xi, each of 
dimensionality D 

• each data point and its neighbors are expected to lie on or close to a 
locally linear patch of the manifold 

 

 

 

Low dimensional Manifold High dimensional Manifold 



LLE Overview 

from: “Nonlinear Dimensionality Reduction by Locally Linear Embedding” 

S. Roweis, L. Saul 



LLE Details 

Steps: 

• assign K neighbors to each data point  

• compute the weights Wij that best linearly reconstruct the data point 
from its K neighbors, solving the  constrained least-squares problem 

 

         έ(W) =  

 

 

• compute the low-dimensional embedding vectors       best 
reconstructed by Wij 
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Self-Organizing Maps (SOM) 

Introduced by Teuvo Kohonen 

• unsupervised learning and clustering algorithm 

• has advantages compared to hierarchical clustering 

• often realized as an artificial neural network 

 

SOMs group the data  

• they perform a nonlinear projection from N-dimensional input space 
onto two-dimensional visualization space 

• they provide a useful topological arrangement of information objects 
in order to display clusters of similar objects in information space 

 

 



SOM: Algorithm 

Consists of a two-dimensional network of neurons, typically 
arranged on a regular lattice.  

• each cell is associated with a single randomly initialized N-
dimensional reference vector.  

Training uses a set of input vectors several times:  

• for each input vector search the map for the most similar reference 
vector, called the winning vector 

• update the winning vector such that it more closely represents the 
input vector 

• also adjust the reference vectors in the neighborhood around the 
winning vector in response to the actual input vector 

After the training: 

• reference vectors in adjacent cells represent input vectors which are 
close (i.e., similar) in information space 



SOM Examples: Galaxies 

Presentation of documents where similar ones cluster together 

PNNL 



SOM Examples: Webtheme 

PNNL 



SOM Examples: Themescape 

Uses 3D representation: height represents density or number of documents in region 

PNNL 



SOM / MDS Example: VxInsight (Sandia) 



SOM Examples: Websom 

Self-organizing map of Net 

newsgroups and postings 

(websom.hut.fi) 



Non-Parametric Statistics 

Distribution free 

• does not rely on assumptions that the data are drawn from a given 
probability distribution (such as a normal distribution) 

Often used tools: 

• histograms (partitions space into bins) 

• kernel density estimation (better than histograms  continuous) 

• regression based on kernels, splines, wavelets, etc.  

• data envelope analysis 

 



Parzen Window 

Estimates density from discrete observations 

• smooth (blur) with a smooth kernel function (such as a Gaussian) 

 

window width 

number of points 



Parzen Window 

Think of every data point as a Gaussian kernel 

• superposition creates density “humps” 

 

 

 

 

 

• varying the kernel size yields multi-scale data decompositions 

 

from Duda, Hart, Stork: Pattern Classification 



Analogous to Human Vision 

Gaussian standard deviation doubles for each image 


