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Relationships

What do these different measures show?
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Relationships

What do these different measures show?
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Top: correlation
° noisiness, direction, strength of relationship

Bottom: regression
* slope, trend of relationship

These are complementary measures



Linear vs. Non-Linear Relationships

Correlation and regression are not reliable here

* defined for linear relationships
° visualization can help here
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Correlation

Pearson’s correlation coefficient

Cov(X,Y) ENX=z)(Y — )]
0,0, - 0,0,

Corr(X,Y) =

Sample correlation (assume n observations):
206 =X)(y; - Y)
=1
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Correlation Matrix

MO FP MP M IC FM FE FI SPC DSC DST
MO 1.00
FP 0312 1.00
MP 0.32° 0.71* 1.00
M 0.36° 0.12¢ 0.14° 1.00
IC 0.39° 0.18° 0.21° 0.62° 1.00
FM 0.26" 0.21° 0.14° 0.30° 0.27% 1.00
FE 0.47° 0.21° 0.18" 0.38° 0.28" 0.24° 1.00
FI 0.53" 0.26° 0.22 0.36% 0.37% 0.29° 0.47° 1.00
SPC 0.32° 0.22° 0.312 0.512 0.47% 0.32° 0.37° 0.35° 1.00
DSC -0.12° 0.03¢ 0.05° 0.17° 0.08° 0.18° —0.05° 0.06° 0.01¢ 1.00
DST -0.02¢ -0.01° 0.05° 0.24° 0.14° 0.05° —0.05° 0.05° 0.05¢ 0.56" 1.00
DM 0.05¢ 0.144 0.136° 0.199 0.169" 0.247° 0.08° 0.11¢ 0.14° 0.46% 0.712
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just value distribution (scatterplot matrix)



Regression

Helps to understand how a dependent variable changes when
any one of the independent variables is varied

* can be used for prediction and forecasting

Assumptions

° the errors are random and normally distributed,
* with mean = zero, and

* constant variance o2, independent and uniform
° the errors are independent of one another

Output:
° regression model : Y. =B + X + X +...+ &

* get the coefficients by solving the least squares problem:

5 ,
@Z(yi _(:Bo +131Xi +ﬁ2Xi"')) =0

° gives rise to a set of normal equations (one for each coefficient)



Goodness of Fit

Total sum of squares: SST=>(Y,-Y)*  df, =n-1
i=1

Regression sum of squares:  SSR = Z(Yi ~Y)? df, =1
=1

Error sum of squares: SSE=)(Y,-Y)? dfi=n-2
=1

, _explained variation SSR
total variation SST

0<r?<1

Coefficient of determination: r

Coefficient r?:
* proportion of variation in Y “explained” by the regression on X

There i1Is much more on this

* confidence analysis, sensitivity analysis, F-test, ANOVA
° multivariate statistics - generalize all to matrix notation
* read a stats book (it's good for you ©)



Residual Analysis

Check out the non-uniform errors

* where does the model not fit?
* are there outliers, and where?
° time to do some plotting

* time for visualization...
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Visualization of Regression results

Visualization may also reveal trends

° extrapolations
* recall Challenger disaster plot

Challenger launch: 317 forecasted

‘ Extrapolation of damage curve to the cold

temperature for January 28, 1986

LY
b \ Daots indicate temperature and O-ring damage for 24
. successful launches prior to Challenger. Curve shows
. increasing damage is related to cooler temperatures.
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High Dimensional Data

# dimensions >> 3

Problems:

° hard to visualize
° massive storage
* hard to analyze (clustering and classification more efficient in low-D)

Solution:

° reduce number of dimensions (but control loss)
* stretch N-D space somehow into 2D or 3D
* analyze (discover) structure, organize

We will discuss:

* principal component analysis (PCA) - reduce dimensions
* multi-dimensional scaling (MDS) - stretch space

* clustering - provide structure

° create hierarchies - provide structure

* self-organizing maps —> provide structure

* and others



PCA: Algebraic Interpretation

Given m points in a n dimensional space, for large n, how
does one project onto a low dimensional space while
preserving broad trends in the data and allowing it to be
visualized?



PCA: Algebraic Interpretation — 1D

Given m points in a n dimensional space, for large n, how
does one project onto a 1 dimensional space?

Choose a line that fits the data so the points are spread out
well along the line



PCA: Algebraic Interpretation — 1D

Given m points in a n dimensional space, for large n, how
does one project onto a 1 dimensional space?

Choose a line that fits the data so the points are spread out
well along the line



PCA: Algebraic Interpretation — 1D

Formally, minimize sum of squares of distances to the line.

Why sum of squares? Because it allows fast minimization,



PCA: Algebraic Interpretation — 1D

Minimizing sum of squares of distances to the line is the same
as maximizing the sum of squares of the projections on that
line, thanks to Pythagoras.




PCA Scores
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PCA: Solution

Also known to engineers as the
Karhunen-Loéve Transform (KLT)

Rotate data points to align successive axes with directions of
greatest variance

* subtract mean from data

° normalize variance along each direction, and reorder according to the variance
magnitude from high to low

° normalized variance direction = principal component

Eigenvectors of system’s Covariance Matrix C

Permute eigenvectors x so they are in descending order of
eigenvalues A

C-— Y X -m& -4 (C-A)X =0

Solve via QR factorization or LU decomposition to get C =QAQ™

* Q: matrix with Eigenvectors, A diagonal matrix with Eigenvalues



Example

Variable X;

fo'e)
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Before PCA




Example

A4,=9.8783 4, =3.0308 Trace = 12.9091
* PC 1 displays (“explains™) 9.8783/12.9091 = 76.5% of total variance




PCA Applied to Faces

Some familiar faces...
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PCA Applied to Faces

We can reconstruct each face as a linear combination of
“basis” faces, or Eigenfaces [M. Turk and A. Pentland
(1991)]
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Reconstruction using PCA

original image reconstructed with 50 eigenfaces

90% variance Is captured |
by the first 50 -
eigenvectors &

Reconstruct existing %
faces using only 50 e
basis images

We can also generate
new faces by
combining
eigenvectors with
different weights
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PCA Applied to Human Body Shapes

Similar concepts can also be used for human body shapes

* see Allen, Curless, Popovic, “The Space of Human Body Shapes”,
SIGGRAPH 2003.

* interpolation in PCA space allows generation of plausible new body
shapes

Store additional data (age, weight, height, etc.) with each body

° |learn the derivative function: A data - A body
° use this derivative function to predict A data - A given body

+20 kg
+20 cm

70 kg 100kg 100kg 70kg 100 kg -20 kg -40kg -20kg  original +20kg +40 kg

170cm 170cm  180cm 190¢cm 190 cm 20 cm



Multidimensional Scaling (MDS)

Maps the distances between observations from N-D into a
lower-D space (say 2D)

Attempts to ensure that differences between pairs of points in
this reduced space match, as closely as possible, the true-
ordered differences between the observations.

Algorithm:

* compute the pair-wise Euclidian distance D;
* order these in terms of magnitude
* minimize energy function to get d; in lower-D space

S (D.rs o drs )2
S5

E = r=1 s=l1 by

N: r-d

2204

r=1 s=1




MDS: Specifics

Specify input as a dissimilarity matrix M, containing pairwise
dissimilarities between N-dimensional data points

Finds the best D-dimensional linear parameterization
compatible with M (down to rigid-body transform + possible
reflection)

(in other words, output a projection of data in D-dimensional
space where the pairwise distances match the original
dissimilarities as faithfully as possible)

MDS is related to PCA when distances are Euclidian, but

* PCA provides low dimensional images of data points
° inadequacy of PCA: clustered structures may disappear

MDS projects data points to low dimensional images AND

° respect constraints:
* keep informational content
* keep similarity / dissimilarity relationships



MDS: Applications

Dissimilarities can be metric or non-metric

Useful when absolute measurements are unavailable
* uses relative measurements

Computation Is invariant to dimensionality of data



MDS: Algorithm

e Task:
Find that configuration of image
points whose pairwise distances
are most similar to the original
inter-point distances !!!

e Formally:
Define: Di_i =lIx, - X; Il d; =lly; -y, Il
Claim: D.= dii i, je [1,n]

1

e In general: an exact solution is not
possible !!!

e Inter Point distances = invariance
features




MDS: Algorithm

Strategy (of metric MDS):

= iterative procedure to find a good configuration of image points

1) Initialization
- Begin with some (arbitrary) initial configuration

2) Alter the image points and try to find a configuration of points
that minimizes the following sum-of-squares error function:

1 d;=D;)* 1 (ly,— y,1-D;)’

B Z‘D“ i Dy ZD.. ZJ:; D

V. CEL Y Y1)

1j




MDS: Algorithm




Force-Directed Methods

Force-directed methods can remove remaining
occlusions/overlaps in the 2D projection space:

* forces are used to position clusters according to distance (and
variance) in N-space

° Insert springs within each node
* the length of the spring encodes the desired node distance

* starting at an initial configuration, iteratively move nodes until an
energy minimum is reached
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An Example: Map of the US

Suppose you know the distances between a bunch of cities...

Chicago Raleigh Boston Seattle S.F Austin Orlando

Chicago 0

Raleigh 641 0

Boston 851 608 0

Seattle 1733 2363 2488 0

S.F 1855 2406 2696 684 0

Austin 972 1167 1691 1764 1495 0
Orlando 994 520 1105 2565 2458 1015 0

Distances calculated with geobytes.com/CityDistanceTool



Result of MDS




Actual Plot of Cities
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Manifold Learning: Isomap

by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000

Tries to unwrap a high-dimensional surface (A) = manifold
° noisy points could be averaged first and projected onto the manifold

Algorithm

* construct neighborhood graph G - (B)

* for each pair of points in G compute the shortest path distances -
geodesic distances

* fill similarity matrix with these geodesic distances
° embed (layout) in low-D (2D) with MDS - (C)



Manifold Learning: Locally Linear Embedding (LLE)

by: S. Roweis, L. Saul, Science, 2000

Based on simple geometric intuitions.

° suppose the data consist of N real-valued vectors X;, each of
dimensionality D

* each data point and its neighbors are expected to lie on or close to a
locally linear patch of the manifold
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LLE Overview

Reconstruct with
linear weights

from: “Nonlinear Dimensionality Reduction by Locally Linear Embedding”
S. Rowels, L. Saul



LLE Detalls

Steps:
* assign K neighbors to each data point )Zi

* compute the weights W; that best linearly reconstruct the data point
from its K neighbors, solving the constrained least-squares problem

e(W) = Zl )Zi _ZWIJXJ |2
| J

* compute the low-dimensional embedding vectors \7, best
reconstructed by W;

OY) =D IY =2 Wy I
| J



Self-Organizing Maps (SOM)

Introduced by Teuvo Kohonen

° unsupervised learning and clustering algorithm
* has advantages compared to hierarchical clustering
* often realized as an artificial neural network

SOMs group the data

° they perform a nonlinear projection from N-dimensional input space
onto two-dimensional visualization space

° they provide a useful topological arrangement of information objects
In order to display clusters of similar objects in information space



SOM: Algorithm

Consists of a two-dimensional network of neurons, typically
arranged on a reqgular lattice.

* each cell is associated with a single randomly initialized N-
dimensional reference vector.

Training uses a set of input vectors several times:

* for each input vector search the map for the most similar reference
vector, called the winning vector

° update the winning vector such that it more closely represents the
iInput vector

* also adjust the reference vectors in the neighborhood around the
winning vector in response to the actual input vector

After the training:

* reference vectors in adjacent cells represent input vectors which are
close (i.e., similar) in information space



SOM Examples: Galaxies

Galaxy view of 100,000 cancer literature abstracts

Presentation of documents where similar ones cluster together




SOM Examples: Webtheme
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SOM Examples: Themescape

PNNL

Uses 3D representation: height represents density or number of documents in region




SOM / MDS Example: VxInsight (Sandia)

Figure 4: Multi-resolution exploration
with detail on demand.



SOM Examples: Websom

Self-organizing map of Net
newsgroups and postings
(websom.hut.fi)




Non-Parametric Statistics

Distribution free

* does not rely on assumptions that the data are drawn from a given
probability distribution (such as a normal distribution)

Often used tools:

* histograms (partitions space into bins)

* kernel density estimation (better than histograms - continuous)
° regression based on kernels, splines, wavelets, etc.

° data envelope analysis

Histogram of x

A

Density
0.00 0.05 0.10 0.5 0.20
Pl



Estimates density from discrete observations
* smooth (blur) with a smooth kernel function (such as a Gaussian)

hy =1 h; =0.5 h; =01

number of points /\X ﬁ\ j\

< window width



Parzen Window

Think of every data point as a Gaussian kernel
° superposition creates density “humps”

from Duda, Hart, Stork: Pattern Classification



Analogous to Human Vision

Gaussian standard deviation doubles for each image



