Introduction to Deep Learning
State of the Art CNN’s in Computer Vision

Object recognition, 2013
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How to train Neural Networks

Step 1: Preprocess the data
In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

)

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Slide credit:Fei-Fei Li




How to train Neural Networks

+ Step 2: Choose the architecture:
— How many Layers? How many nodes?
— Conv or fully connected
+ Step 3: Initialize well
— set weights to small random numbers
— set biases to zero
— Double check that the loss is reasonable: (by trying different reg. values

Slide credit:Fei-Fei Li
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How to train Neural Networks

« Step 4: Let’s try to train:

— start with small regularization and find learning rate that makes the loss
go down.

— loss not going down:

— learning rate too low

— loss exploding:

— learning rate too high

» Step 5: Cross-validation strategy:

— coarse -> fine cross-validation in stages

— First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

— Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

Slide credit:Fei-Fei Li
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How to train Neural Networks

Normally you can’t afford a huge computational budget for expensive
cross-validations.
Need to rely more on intuitions and visualizations...

Visualizations to play with:

- loss function

- validation and training accuracy

- min,max,std for values and updates, (and monitor their ratio)
- first-layer visualization of weights (if working with images)

Seemingly unrelated: Model Ensembles
- One way to always improve final accuracy:

take several trained models and average their predictions

Slide credit:Fei-Fei Li

Monitor and visualize the loss curve

If this looks too linear: learning rate is|low.
20 If it doesn’t decrease much: learning rate might be too high

the “width” of the curve is related
to the batch size. This|one looks too wide (noisy)
=> might want to incregse batch size

20 %0 & & 100
Epoch »

Slide credit:Fei-Fei Li
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Monitor and visualize the accuracy:
big gap = overfitting
=> increase regularization strength
no gap
_ => increase model capacity
_— Validation accuracy
Slide credit:Fei-Fei Li
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Track the ratio of weight updates / weight magnitudes:
max MWM
mean MWWNWW
e
. g
mn |
ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.01 - 0.001 or so
Slide credit:Fei-Fei Li
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Visualizing first-layer
weights:

Noisy weights =>
Regularization maybe
not strong enough

Slide credit:Fei-Fei Li
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CNNs in vision

DeCAF, Caffe
Zeiler & Fergus UC Berkeley
(NYU) General purpose features
General purpose features, b
Years deconvolution, ... ’:
of A rd
deep . [Girshick et al. 2014]
learning UC Berkeley
research Krizhevsky & Hinton /_y State-of-the-art
(Toronto, Toronto PASCAL detection
NYU, Winner ImageNet 2012
Montreal, CUDA ConvNet \
Google, - [Oquab et al. 2014]
Facebook, INRIA
Microsoft V
) State-of-the-art
TR LS PASCAL classification
(NYU, Facebook)
OverFeat \
[Razavian et al. 2014]

KTH
More applications

Slide: A. Vedaldi




Famous CNNs

C3: 1, maps 16@10x10
S4:1. maps 16@5x5

INPUT

GC1: feature maps
3232 6@26:28

Convoluti L

S2: . maps
6@14x14

Convolutions ~ Subsampling Full connection Ran zaton

http://yann.lecun.com/exdb/lenet/

Full connection Gaussian connections

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, november 1998
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A.3Kriii1evsky, I. Sutskever, and G. Hinton. ImageNet classification with
deep convolutional neural networks. NIPS13

Latest & greatest CNNs (deeper and deeper)

GooglLeNet
C. Szegedy et al.

Going deeper with convolutions

arXiv technical report, 2014

‘Table 1: ConvNet configurations (shown in columns). The depth of the configurations incrc
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold).
convolutional layer parameters are denoted as “conv{receptive field size)-(number of channc
The ReLU activation function is not shown for brevity.

ConvNet C
[ALRN | B [ C [ D [ E
TTweight | 11 weight | 13 welght | 16 welght | 16 weight | 19 weight
layers layers layers layers layers layers
Tnput (224 x 224 RGB imago)

Conv3-64 | com3-64 | com3-64 | comv3-64 | comv3-64 | comv3-64
| LRN ‘cuan-M conv3-64 | conv3-64 | conv3-64

maxpool
Conv3-128 | conv3-128 | conv3-128 | conv3-128 | convd-128 | convd-128
| ‘mnvii-llﬂ conv3-128 | conv3-128 | conv3-128

maxpool
Conv3-236 | conv3-236 | comv3-236 | comv3-236 | comv3-236 | conv3-236
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv1-256 | conv3-256 | conv3-256
conv3-256

‘maxpool
Conv3-512 | conv3-312 | com3-312 | comva-312 | comv3-312 | conva-312
conv3-512 | conv3-512 | comv3-512 | conv3-512 | conv3-512 | conv-512
conv1-512 | conv3-512 | conv3-512
conv3-512

maxpool
Conv3-312 | conv3-312 | com3-312 | comv3-312 | comv3-312 | comv3-312
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv-512 | conv3-512
conv1-512 | conv3-512 | conv3-512
conv3-512

‘maxpoo]

FC-4096

FC-4096

FC-1000

Soft-max

‘Table 2: Number of parameters (in millions).
Network AAIRN[ B [C [D [ E
fumber of parameters

VGG net (Oxford):

K. Simonyan, A. Zisserman, Very Deep
Convolutional Networks for Large-
Scale Image Recognition, arXiv, 2014




Really large CNNs
From VGG’s network presentation:

* Heavily-modified Caffe C++ toolbox

* Multiple GPU support
|* 4 x NVIDIA Titan, off-the-shelf workstation |
* data parallelism for training and testing
b ~3.75 times speed-up, 2-3 weeks for training|

image batch

Imagenet top-5 error rate: 36%-> 18% (2012) -> 6% (2014)

0.28

1
|

0.26 1.7x reduction in
classification error
since last year

o
)

0.16

0.12 ' -
~4.2x reduction in

0.07 | ' classification error
~since 2010

o
=

Classification error

2010 2011 2012 2013 2014
ILSVRC year

http://www.image-net.org/challenges/LSVRC/2014/eccv2014




Extract region Compute CNN
image  proposals (~2k / image) features

227x227

a. Crop b. Scale (‘.amsotroplc)

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. CVPR 14

Regions with Convolutional Neural Net.s system (RCNN)

Supervised pre-training
Train a SuperVision CNN* for the 1000-way
ILSVRC image classification task

Auxiliary task:
ILSVRC 2012 classification
(1.2 million images)

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. CVPR 14




Regions with Convolutional Neural Net.s system (RCNN)

Fine-tune the CNN for detection
Transfer the representation learned for ILSVRC
classification to PASCAL (or ImageNet detection)

Target task:
PASCAL VOC detection
(~25k object labels)

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. CVPR 14

Regions with Convolutional Neural Net.s system (RCNN)

Train detection SVMs
(With the softmax classifier from fine-tuning
mMAP decreases from 54% to 51%)

per-class

iobjectproposals ~2k windows /

image UM
PASCAL VOC raining labels

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. CVPR 14
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Detection results

) " Seemmew
icycle (loc): ov=0.46 1-r=0.45 bicycle (loc): ov=0.10 1-r=0.45) bicycle (loc): ov=0.42 1-r=0.45] bicycle (bg): ov=0.00 1-r=0.44

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. CVPR 14

Failures: mostly localization errors

R. Girshick, J. Donahue, T. Darrell, and J.
Malik. Rich feature hierarchies for
accurate object detection and semantic
segmentation. CVPR 14
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Detection results

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv |mAP
R-CNN pool 51.8 60.2 364 27.8 232 528 60.6 49.2 183 47.8 443 408 56.6 58.7 424 234 46.1 367 513 557|442
R-CNN fcg 59.3 61.8 43.1 34.0 251 53.1 60.6 52.8 21.7 47.8 427 478 525 585 446 256 483 340 53.1 580|462
R-CNN fc; 57.6 57.9 38.5 31.8 23.7 512 58.9 514 200 50.5 409 46.0 51.6 559 433 233 481 353 51.0 57.4|447
R-CNN FT pool; |58.2 633 379 27.6 26.1 54.1 669 514 267 555 434 43.1 577 59.0 458 281 50.8 40.6 53.1 56.4|47.3
R-CNN FT fcg 63.5 66.0 479 37.7 299 625 702 602 32.0 579 47.0 535 60.1 642 522 313 550 500 57.7 63.0| 53.1
R-CNN FT fer 64.2 69.7 500 41.9 320 626 71.0 60.7 327 58.5 465 56.1 60.6 66.8 542 315 52.8 489 579 64.7|542
R-CNNFT fc7 BB | 68.1 72.8 568 43.0 368 663 74.2 67.6 344 635 545 612 69.1 68.6 587 334 629 511 625 64.8| 585
DPM v5 [20] 332 603 102 16.1 273 543 582 23.0 200 24.1 267 127 58.1 482 432 120 21.1 36.1 46.0 435|337
DPM ST [2¢] 238 582 105 85 27.1 504 520 73 192 228 181 8.0 559 448 324 133 159 228 462 449|29.1
DPM HSC [31] 322 583 11.5 163 30.6 499 54.8 235 21.5 27.7 34.0 13.7 58.1 51.6 399 124 235 344 474 452|343

Table 2: Detection average precision (%) on VOC 2007 test. Rows 1-3 show R-CNN performance without fine-tuning. Rows 4-6 show
results for the CNN pre-trained on ILSVRC 2012 and then fine-tuned (FT) on VOC 2007 trainval. Row 7 includes a simple bounding-box
regression (BB) stage that reduces localization errors (Section C). Rows 8-10 present DPM methods as a strong baseline. The first uses
only HOG, while the next two use different feature learning approaches to augment or replace HOG.

70
R-CNN R-CNN
60 53.7% 53.3%
A Iy
50
A ° °
40
g 8
gE 30 °
°
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VvOoC'07 vOC'08 VOC'09 VOC'10 VOC'1l VOC12
PASCAL VOC challenge dataset

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. CVPR 14

Detection results

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv |mAP
R-CNN T-Net 64.2 69.7 50.0 419 320 626 71.0 60.7 32.7 585 46.5 56.1 60.6 668 542 315 52.8 489 579 64.7|542
R-CNN T-Net BB |68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 344 635 545 612 69.1 68.6 587 334 629 51.1 625 64.8|585
R-CNN O-Net 71.6 73.5 58.1 422 394 70.7 76.0 745 38.7 71.0 569 745 679 69.6 593 357 62.1 640 665 71.2| 622
R-CNN O-NetBB |73.4 77.0 634 454 44.6 75.1 78.1 79.8 40.5 73.7 622 794 781 731 642 356 668 67.2 704 71.1|66.0

Table 3: Detection average precision (%) on VOC 2007 test for two different CNN architectures. The first two rows are results from
Table 2 using Krizhevsky et al.’s architecture (T-Net). Rows three and four use the recently proposed 16-layer architecture from Simonyan
and Zisserman (O-Net) [43].

“Table 1: ConvNet configurations (shown in cofumns). The depth of the configurations incrc

Comoline a0 iy denete s “eomorepioe 3o sy e o o VGG net: K. Simonyan, A. Zisserman, Very Deep

“The ReLU activation function s not shown for breviy.

ComNerContgon Convolutional Networks for Large-Scale Image Recognition,
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R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. CVPR 14
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R-CNN: ILSVRC 2013 performance

ILSVRC2013 detection test set mAP

*R-CNN BB 31.4%
*OverFeat (2) 24.3%
UvA-Euvision 22.6%
*NEC-MU 20.9%
*OverFeat (1)
Toronto A
SYSU_Vision
GPU_UCLA

Delta

A [l post competition result
UIUC-IFP J1.0% I competition result

0 20 40 60 80 100
mean average precision (mAP) in %

R-CNN speed and

* R-CNN detection time/frame

20 classes

200 classes

0s 2.5s 5s

Selective search
O(1) M Cropping & resizing
B CNN feature computation (GPU)
o) Region classification




SPP-net = CNN + SPP

Kaiming He et al, “Spatial Pyramid Pooling in Deep Convolutional Networks for
Visual Recognition
“Classical” conv. NN” requires a fixed-size (e.g. 224224) input
image:

— Need cropping or warping to transform original image to square shape

— This constraint is related to Fully-Connected layer ONLY

. let’s use Spatial Pooling Pyramid to transform any-shape

image to ‘fixed-length” feature vector.

-
.

| image H crop / warp H conv lavers H fc layers H output |

| image H'cun\- layers H spatial pyramid pooling H fc layers H output |

http://research.microsoft.com/en-us/um/people/kahe/

Spatial Pyramid Pooling

fully-connected layers (fs, fe-)

fixed-length representation

[pool3x3] [pool2x2] [poollxl] —— ... —— —
type=pool type=pool type=pool - - ~
pool=max pool=max pool=max —— ... — — —
inputs=convs inputs=convs inputs=convs 4 16x256-d §4x2564d 4 2564d

sizeX=5 sizeX=7 sizeX=13
e e et @ D

spatial pyramid pooling layer

feature maps of convs
(arbitrary size)

f convolutional layers
mput image
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SPP-net training

» Size augmentation:
— Imagenet: 224x224 - 180x180
— Horizontal flipping
— Color altering
* Dropout with 2 last FC layers
* Learning rate:
— Init Ir= 0.01; divide by 10 when error plateau

SPP: Imagenet - Detection

1. Find 2000 windows candidate /~ R-CNN /

2. extract the feature maps from the entire image only once
(possibly at multiple scales) /~ Overfeat/.

3. Then apply the spatial pyramid pooling on each
candidate window of the feature, which maps window to
a fixed-length representation

4 - Then 2 FC Iayers rhlly-connacteita:\ ers (fog, fog)
5 . SVM fixed-length representation

spatial pyramid
2 pooling layer

~170x faster than R-CNN

feature maps of convs

i convolutional layers

input image
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SPP-net: Imagenet classification

method test scale | test views | top-1val top-5 val
(a) Krizhevsky et al. [16] 1 10 40.7 18.2
(bI) Overfeat (fast) [24] 1 - 39.01 16.97
(b2) Overfeat (fast) [24] 6 - 38.12 16.27
(b3) Overfeat (big) [24] 4 - 3574 14.18
(cl) Howard (base) [15] 3 162 37.0 15.8
(c2) Howard (high-res) [15] 3 162 36.8 16.2
(d1)  Zeiler & Fergus (ZF) (fast) [33] 1 10 38.4 16.5
(d2)  Zeiler & Fergus (ZF) (big) [33] 1 10 375 16.0
(el) our impl of ZF (fast) 1 10 35.99 1476
(e2) SPP-nety, single-size trained 1 10 35.06 14.04
(e3) SPP-nets, single-size trained 1 10 34.98 14.14
(ed) SPP-netg, multi-size trained 1 10 34.60 13.64
(e5) SPP-netg, multi-size trained 1 8+2full 34.16 13.57

Automatic Glioma Classification

« Gliomas are the most common brain cancers.

. Better classification is critical to the development of targeted
therapies.

« Microscopy images of tissue slides provide reach information.

« Glioma Tissue Example: http://cancer.digitalslidearchive.net/
select GBM or LGG patients.

Glioblastoma?
Oligodendroglioma?
Astrocytoma?
Oligoastrocytoma?
Anaplastic Astro?
Anaplastic Oligo?
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Pipeline summary

Non-discriminativi o
Patch eliminatiori CNN Training

atch classification

l

Image classification

P

Too Large for CNNs

. The resolution of tissue images is really high (gigapixel), it is impossible to
run CNNs on the whole images.

Pathologists cannot look at the whole image at the finest resolution at
one time either. They scan through the image and make decisions
based on regions.

- The algorithm can do the same thing. A CNN is trained to classify image
patches. Then the patch-level classification results are aggregated for
image-level classification.

Glioblastoma?
Oligodendrogli
oma?
Astrocytoma?
Oligoastrocyto
ma?
Anaplastic
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Pipeline summary

Patch extraction

l

on-discriminativ|
Patch eliminatio

CNN Training

l

)

atch classification

l

Image classification

CNN Architecture

. 800,000 patches of size 500 x
500 are extracted from 1000

tissue images as input data.
. Patches are randomly

rotated, flipped, cropped,
and color-adjusted.

. A CNN with 4 convolutional
layers are then applied on

those patches.

Layer | Filter size, stride Output size
Input - 400 x 400 x 3
Conv 10 x 10,2 196 x 196 x 80
ReLU+LRN - 196 x 196 x 80
Max-pool 6 x 6,4 49 x 49 x 80
Conv 5 x5, 1 45 x 45 x 120
ReLU+LRN - 45 x 45 x 120
Max-pool 3x3,2 22 x 22 x 120
Conv 3x3 20 x 20 x 160
ReLU - 20 x 20 x 160
Conv 3x3,1 18 x 18 x 200
ReLU - 18 x 18 x 200
Max-pool 3x3,2 9 x 9 x 200
FC - 320
ReLu+Drop - 320
FC - 320
ReLu+Drop - 320
FC - 6
Softmax - 6

ReLU: Rectified Linear Units.

LRN: Local Response
Normalization.

FC: Fully Connected layer.
Drop: Dropout layer, probability =
0.5.
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First Layer Filters Learnt
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Pipeline summary

Patch extraction

l

l

PFtch classification

l

Image classification
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However, Patches May not be Discriminative

« A patch in an image of grade IV Glioblastoma may be a:
- Low grade glioma tissue.
- Healthy tissue.
« A patch in an image of mixed Oligoastrocytoma may be a:
- Oligodendroglioma or Astrocytoma tissue.
- Healthy tissue.

Not discriminative,

Disc_riminat 1_ Glioblasto More like a grade |
ive ma glioma
patches Grade IV (Low Pleomorphism)

Non-discriminative patch elimination

« Non-discriminative patches are noise. They can be
identified using Multiple Instance Learning techniques.

— Modeling whether a patch is discriminative or not
by a hidden variable.

— Solve the hidden variables by EM.

.~ Glioblast <rediction (E-step

oma
Glioblast

CNN Model

‘Training (M-step)




Pipeline summary

Patch extraction

|

Non-discriminativi o
Patch eliminatiori CNN Training

Given a New Image

« Extract patches (usually sparse sampling).

. Patch-level classification by CNN.

« Count the number of predicted patch-level classes.
. Image-level classification by multiclass logistic

ulti-class
Logistic
egressiol

regression.

b Patch-level D |::> |::> Image-level
prediction count Prediction
by CNN Il.

Our trained patch-level A multi-class logistic regression
CNN is here. was trained for image classification
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Glioma Image Classification Results

Methods Accuracy
Morphology Features (Cooper etal. 2012) + SVM 0.629
Patch-level CNN + Voting 0.710
Multiple-instance CNN + LR 0.771
Inter-observer agreement (Coons etal. 1997) 0.7-0.8
Chance 0.513

Inter-observer agreement: the agreement between
experienced pathologists on a similar dataset. The
agreement increased from 0.7 to 0.8 after reviewing
cases together.




