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MLCV, Lecture 1. Regularization problem

underfitting just right overfitting




Today: two regularization methods

Convolutional Networks
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(b) After applying dropout.




Convolutional Networks

Discriminative (supervised) o
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Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied
to handwritten zip code recognition. Neural Computation, 1(4):541-551, Winter 1989

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 1998.

Generative (unsupervised)

P¥ (pooling layer)
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2 Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
NWJ& . categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
! V' (visible layer) object categories (faces, cars, airplanes, motorbikes).
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Figure 1. Convolutional RBM with probabilistic max-

pooling. For simplicity, only group k of the detection layer Convolutional Deep Belief Networks for Scalable Unsupervised
and the pooing layer are shown. The basic CRBM corre- . . . .
sponds to a simplified structure with only visible layer and Learning of Hierarchical Representations, H. Lee, R. Grosse, R.

detection (hidden) layer. See text for details. Ranganath’ A Y. Ng’ ICML 2010




Minimal Convolutional Network

Figure 28.7 A small 1d convolutional RBM with two groups of hidden units, each associated with a filter
of size 2. h} and h? are two different “views” of the data in the first window, (z1,x2). The first view is
computed using the filter w', the second view using filter w?. Similarly, A3 and h2 are the views of the
data in the second window, (z2, z3), computed using w' and w? respectively.

# of Parameters
RBM: 4 x 6 C-RBM: 2 x 2

Inputs x outputs block size x # of output types

K. Murphy, Probabilistic Machine Learning



Weights and connections in a CNN

(Simard et. al. 2003)

Layer #4
50 Feature Fully
Maps (l:ggnected Connected

Each 5x5 g 10 Neurons

Input Layer s
292(29 Y 6 Feature Maps
Each 13x13

In layer 1, we have 6 feature maps each of which has size 13 x 13. Each hidden node in one of these feature
maps is computed by convolving the image with a 5x5 weight matrix, adding a bias, and passing the result
through some form of nonlinearity.

There are 13x13x6 = 1014 neurons and (5x5+1)x6 = 156 weights.

In layer 2, we have 50 feature maps, each of which is obtained by convolving each feature map in layer 1 with a 5

x 5 weight matrix, adding them up, adding a bias, and passing through a nonlinearity.
There are 5 x 5 x 50 = 1250 neurons, (6 x 5+ 1) x 6 x 50 = 7800 weights, and 1250 x 26 = 32, 500 connections.

Layer 3 is fully connected to layer 2, and has 100 neurons and 100 x (1250 + 1) = 125, 100 weights.
Layer 4 is also fully connected, and has 10 neurons, and 10 x (100 + 1) = 1010 weights.

Total: 3,215 neurons, 134,066 adjustable weights, and 184,974 connections.

K. Murphy, Probabilistic Machine Learning



Convolutional Neural Networks (aka ‘LeCun’ nets)

http://yann.lecun.com/exdb/lenet/index.html




Convnet Successes

» Handwritten text/digits | RN
— MNIST  (0.17% error [Ciresan et al. 2011]) ~L. (K21

— Arabic & Chinese [Ciresan et al. 2012] [.%==hg

i3 BN
« Simpler recognition benchmarks .Wllﬁl.

— CIFAR-10 (9.3% error [Wan et al. 2013])

— Traffic sign recognition J
* 0.56% error vs 1.16% for humans [Ciresan et al. 2

« But (until recently) less good at
more complex datasets

— E.g. Caltech-101/256 (few training examples)




Convolutional Neural Networks

24@8x18

(il
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4xd 6x6
3x3 subsampling convolution

convolution (96 kemnels)
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Figure 5: The architecture of the convolutional net used for the NORB experiments.
The input is an image pair, the system extracts 8 feature maps of size 92 x 92, B maps
of 23 x 23, 24 maps of 18 x 18, 24 maps of 6 x 6, and 100 dimensional feature vector.
The feature vector is then transformed into a 5-dimensional vector in the last layer to

compute the distance with target vectors.

Bengio & Le Cun




Feed-forward:

— Convolve input
— Non-linearity (rectified linear)
— Pooling (local max)

Supervised [ Non-linearity }

Train convolutional filters by
back-propagating classification err

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5

6@28x28 85 fimes

s@1xis 2 Input Image
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Subsampling Convolutions  Subsampling Full connection
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Convnet Successes
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Network connectivity

Fully Connected Layer

Example: 200x200 image
40K hidden units
m) 2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
40
training samples anyway..
9 P yway Ranzaton

Slide credits: M. A. Ranzatto




Network connectivity

Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .

face recognition).
' ' Ranzat
Slide credits: M. A. Ranzatto anzatoli




Network connectivity

Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .,
face recognition). Ranzatonl




Network connectivity

Convolutional Layer

Share the same parameters across
different locations (assuming input is

stationary):
Convolutions with learned kernels

Slide credits: M. A. Ranzatto Ranzaton



Network connectivity

Convolutional Layer

input feature kernel
feature map map

n!
n!
n!

Shide credits: M. A. Ranzatto



Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

ide credits: M. A. Ranzatto



Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

68
Ranzaton

ide credits: M. A. Ranzatto



Pooling Layer: Examples
Max-pooling:
n n—1/_ _
hj(x’ y):maxxeN(x),jzeN(y)hj (-X, y)
Average-pooling:

n _ n—1/—- —
L2-pooling:

n _ n—1,/—_ —\2
hj(x’y)_\/zxeN(x),yeN(y) hj (x,y)

L2-pooling over features:

n _ n—1 2
hj(x’y)_\/zkeN(J)hk (x’y)

69
Slide credits: M. A. Ranzatto Ranzaton




Pooling Layer: Receptive Field Size

hn_l hn hn+l

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

73
Ranzaton

Slide credits:



Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

73
Ranzaton



Pooling Layer: Receptive Field Size

hn—l h" hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

74
Ranzaton



Local Contrast Normalization

i W) (N (x, )
hxy) max (€,0' (N (x, y)))

Performed also across features
and in the higher layers..

Effects:

— improves invariance
— improves optimization
— increases sparsity

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton



Local Contrast Normalization

i+1 hi(x,y)_mi(N(x,y))
h X, V)= :
(%, ) max (€, 0' (N (x,y)))

75
Ranzaton



CNN components

linear 3D filters downsampling

(Fb) FHy=Fx*xx+b

i ay sy Wl

normalization

‘Z —y = max{0, x} sliding 12

=}

spatial pooling

il = MaX Xpagk
Y PaER; pq

Slide credits: A. Vedaldi



ConvNets: Typical Stage

One stage (zoom)

Rectification
+
Contrast

Filter Bank Pooling

COUI"[GSY of Normalization
K. Kavukcuoglu Ranzaton




Note: after one stage the number of feature maps is usually increased
(conv. layer) and the spatial resolution is usually decreased (stride in
conv. and pooling layers). Receptive field gets bigger.

Reasons:
- gain invariance to spatial translation (pooling layer)
- increase specificity of features (approaching object specific units)

Rectification
+
Contrast

Normalization
Ranzaton

Filter Bank

courtesy of
K. Kavukcuoglu




SIFT Descriptor

Image
Pixels » Apply
Gabor filters

Spatial pool (" )
(Sum) ( DR

Normalize to Feature
unit length Vector




Spatial Pyramid Matching

SIFT » Filter with
Features Visual Words

Multi-scale S

— 2

spatial pool L} IL_JII_ “] »Classiﬁer
(Sum) Ll i Joadul [T}




Filtering

 Convolutional

— Dependencies are local

— Translation equivariance

— Tied filter weights (few params)
— Stride 1,2,... (faster, less mem.)




Filtering

e Tiled

— Filters repeat every n

— More filters than
convolution for given
# features

Filters Feature maps



Non-Linearity
* Non-linearity

— Per-feature independent

— Sigmoid: 1/(1+exp(-x))

* Simplifies backprop
* Makes learning faster

e Avoids saturation issues

—> Preferred option




* Spatial Pooling

— Non-overlapping / overlapping regions

— Sum or max

— Boureau et al. ICMUL'10 for theoretical analysis




Role of Pooling

* Spatial pooling
— Invariance to small transformations

— Larger receptive fields
(see more of input)

Visualization technique from

|Le et al. NIPS’10]:

Zeiler, Fergus [arXiv 213]
Videos from: http://ai.stanford.edu/~quocle/ TCNNweb



Normalization

e Contrast normalization

 See Divisive Normalization in Neuroscience

Filters




Normalization

* Contrast normalization (between/across feature maps)
— Local mean = 0, local std. = 1, “Local” 2 7x7 Gaussian

— Equalizes the features maps

aure Mps

After Contrast Normalization

Feature Maps



Role of Normalization

* Introduces local competition between features

— Poor man’s version of “Explaining away” in graphical models
—  Just like top-down models

— But more local mechanism

* Also helps to scale activations at each layer better for learning
— Makes energy surface more isotropic

— So each gradient step makes more progress

* Empirically, seems to help a bit (1-2%) on ImageNet
— More on other datasets (see [ Jarrett et al. ICCV’09] for interesting analysis)



Single Layer Architecture

Input: Image Pixels / Features

Features / Classifier




ConvNets: Typical Architecture

Whole system

Input Class
Image | Fully Conn. |Labels
Layers
1%t stage 2" stage 3" stage

Conceptually similar to:

SIFT — K-Means — Pyramid Pooling —» SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT — Fisher Vect. — Pooling - SVM
Sanchez et al. “Image classifcation with F.V.: Theory and practice” [JCV 2012

82
Slide: M-A Ranzatto Ranzaton




Breakthrough #1

RBM pretraining + backpropagation modeling WER

technique Hub5’00- SWT:{ RT03S-FSH

GMM, 40 mix DT 30%h SI . 23.6 274

/— Transition Probabilities NN 1 hidden-layerx4634 units 260 294

Dsgsy : + 2x5 neighboring frames 224 257
DBN-DNN 7 hidden layersx 2048 unit 171 19.6
+ updated state alignment 16.4 18.6
+ sparsification 16.1 18.5

“—— Observation
Probabilities

GMM 72 mix DT 2000h SA 17.1 18.6

“We realized that by modeling senones directly

using DNNs, we had managed to outperform

‘ .. g e S state-of-the-art conventional CD-GMM-HMM

P s Bt T8 R e— large-vocabulary speech-recognition systems by
TR Bl el L L a relative error reduction of more than 16
Fig. 1. Diagram of our hybrid architecture employing a deep neural network. percent. This is extremely Significant when you
The MM models th sl yroperyof he spesh ina and e DX consider that speech recognition has been an
states). The same DNN is replicated over different points in time. active research area for more than five

decades.”

http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx

Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary
Speech Recognition, Dahl et. Al. 2011




Convolutional models & deep networks

A LD ITNALY Y

Honglak Lee & Andrew Ng, ICML 2010
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Figure 2. The first layer bases (top) and the second layer
bases (bottom) learned from natural images. Each second
layer basis (filter) was visualized as a weighted linear com-
bination of the first layer bases.

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four

object categories (faces, cars, airplanes, motorbikes).




Dropout

a) Standard network (b) Dropout network

Figure 3: Comparison of the basic operations of a standard and dropout network.




MLCV, Lecture 4: Voting Methods

Give up idea of building "the’ classifier
Generate a group of base-learners which has higher accuracy when
combined
Main tasks
— Generating the learners
— Combining them




MLCV, Lecture 4: Why should this work?

Committee of M predictors for target output 7 Z Yo (X)

Output: true value + error  y(x) = h(x) + €(x)

Average sum of squares error for m-th expert:

Bx = [ {ym(x) — h(x)}*| = Bx | e-m_<x)?1

Average error of individual members: E v = ﬁ
Average error of committee:

TER 1.
Ecom = E:sc{{L Z Y (X) — h(X)}J

m=1

If errors have zero mean and are uncorrelated: Fx [Em(x)] — 0

Ex [em(x)e;(x)] =0
then Ecom = +
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Dropout

(a) Standard Neural Net (b) After applying dropout.

Each sample is processed by a ‘decimated’ neural net

Decimated nets: distinct classifiers
They should all do the same job

Improving neural networks by preventing co-adaptation of feature detectors
GE Hinton, N Srivastava, A Krizhevsky, | Sutskever, RR Salakhutdinov, arXiv, 2012, JMLR 2014
http://www.cs.toronto.edu/~rsalakhu/papers/srivastaval4a.pdf




Dropout
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(a) Standard Neural Net

(b) After applying dropout.

Applying dropout to a neural network amounts to sampling a “thinned” network from
it. The thinned network consists of all the units that survived dropout (Figure 1b). A
neural net with n units, can be seen as a collection of 2" possible thinned neural networks.
These networks all share weights so that the total number of parameters is still O(n?), or
less. For each presentation of each training case, a new thinned network is sampled and
trained. So training a neural network with dropout can be seen as training a collection of 2"
thinned networks with extensive weight sharing, where each thinned network gets trained

very rarely, if at all.

Improving neural networks by preventing co-adaptation of feature detectors
GE Hinton, N Srivastava, A Krizhevsky, | Sutskever, RR Salakhutdinov, arXiv, 2012, JMLR 2014
http://www.cs.toronto.edu/~rsalakhu/papers/srivastaval4a.pdf




Dropout block

(a) Standard network (b) Dropout network

Figure 3: Comparison of the basic operations of a standard and dropout network.

'r‘g-l) ~ Bernoulli(p),
(z+1)z (z+1) y(l) — r(l)*y(l)

+0b;
f(zé”l’), MO )
y f(zf*”).

‘Feature noising’




Test time: Deterministic approximation

Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

At test time, the weights are scaled as W(l) = pW(l) as 1 , : —
. . . . . #—4 Monte-Carlo Model Averaging
shown in Figure 2. The resulting neural network is used [ Approximate averaging by weight scaling

without dropout.

An expensive but more correct way of averaging the models is to'
sample k neural nets using dropout for each test case and '
average their predictions. As k — «, this Monte-Carlo model
average gets close to the true model average.

Test Classification error %

\

By computing the error for different values of k we can see how

UL
il

|
quickly the error rate of the finite-sample average approaches the — ** [T7]T1[]] T \ﬁ

error rate of the approximate model average.

20 a0 0 T 100
Number of samples used for Monte-Carlo averaging (k)




Dropout performance
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Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.




Dropout performance
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(b) CIFAR-10

Method

Binary Features (WDCH) (Netzer et al., 2011)

HOG (Netzer et al., 2011)

Stacked Sparse Autoencoders (Netzer et al., 2011)

KMeans (Netzer et al., 2011)

Multi-stage Conv Net with average pooling (Sermanet et al., 2012)
Multi-stage Conv Net + L2 pooling (Sermanet et al., 2012)
Multi-stage Conv Net + L4 pooling + padding (Sermanet et al., 2012)
Conv Net + max-pooling

Conv Net + max pooling + dropout in fully connected layers
Conv Net + stochastic pooling (Zeiler and Fergus, 2013)

Conv Net + max pooling + dropout in all layers

Conv Net + maxout (Goodfellow et al., 2013)

Human Performance

Table 3: Results on the Street View House Numbers data set.

Method CIFAR-10

CIFAR-100

Conv Net + max pooling (hand tuned) 15.60
Conv Net + stochastic pooling (Zeiler and Fergus, 2013) 15.13
Conv Net + max pooling (Snoek et al., 2012) 14.98
Conv Net + max pooling + dropout fully connected layers 14.32
Conv Net + max pooling + dropout in all layers 12.61
Conv Net + maxout (Goodfellow et al., 2013) 11.68

43.48
42.51

41.26
37.20
38.57

Table 4: Error rates on CIFAR-10 and CIFAR-100.




Breakthrough #2




Dropout performance

Figure 6: Some ImageNet test cases with the 4 most probable labels as predicted by our model.
The length of the horizontal bars is proportional to the probability assigned to the labels
by the model. Pink indicates ground truth.

Model Top-1 Top-5

Sparse Coding (Lin et al., 2010) 47.1 28.2
SIFT + Fisher Vectors (Sanchez and Perronnin, 2011)  45.7 25.7
Conv Net + dropout (Krizhevsky et al., 2012) 37.5 17.0

Table 5: Results on the ILSVRC-2010 test set.

Top-1 Top-5
Model (val) (val)

SVM on Fisher Vectors of Dense SIFT and Color Statistics - -
Avg of classifiers over FVs of SIFT, LBP, GIST and CSIFT -

Conv Net + dropout (Krizhevsky et al., 2012) 40.7 18.2
Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012) 38.1 16.4

Table 6: Results on the ILSVRC-2012 validation/test set.




Maxout (Goodfellow et al, 2013)

In a convolutional network, a maxout feature map can be
constructed by taking the maximum across k affine feature maps
(i.e., pool across channels, in addition spatial locations)

http://Iwww-etud.iro.umontreal.ca/~goodfeli/maxout.html



http://www-etud.iro.umontreal.ca/~goodfeli/maxout.html
http://www-etud.iro.umontreal.ca/~goodfeli/maxout.html
http://www-etud.iro.umontreal.ca/~goodfeli/maxout.html

Maxout units vs. ReLU

Rectifier Absolute value

Figure 1. Graphical depiction of how the maxout activa-
tion function can implement the rectified linear, absolute
value rectifier, and approximate the quadratic activation
function. This diagram is 2D and only shows how max-
out behaves with a 1D input, but in multiple dimensions a
maxout unit can approximate arbitrary convex functions.




Filters learned with maxout

Figure 4. Example filters learned by a maxout MLP
trained with dropout on MNIST. Each row contains the
filters whose responses are pooled to form a maxout unit.




Maxout vs. RelLUs

Comparnson of large rectlfner networks to maxout

|
Mamut
\ | Rectifier, no channel pooling

Rectifier + channel pooling
Large rectifier, no channel pooling
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Maxout: responses are not sparse

(a) Without dropout (b) Dropout with p = 0.5.

Effect of dropout on sparsity. ReLUs were used for both models. Left: The histogram
of mean activations shows that most units have a mean activation of about 2.0. The
histogram of activations shows a huge mode away from zero. Clearly, a large fraction of
units have high activation. Right: The histogram of mean activations shows that most
units have a smaller mean mean activation of about 0.7. The histogram of activations
shows a sharp peak at zero. Very few units have high activation.

Histogram of maxout responses
) I

= — NN W W
ocovuoono

i

# of occurrences

Activation

Figure 2. The activations of maxout units are not sparse.

Dropout + ReLUs:
sparse responses

Why? Regularizer cost decreases

How: units get stuck at zero
(‘dead’ units)

Dropout + MaxOut:
non-sparse responses

Why? No ‘0’ term among max-ed
filters




Maxout does not have ‘dead units’

RelLUs: units get stuck below 0, never updated

Maxout: always differentiable, with nonzero
derivative




A GLM defines a conditional distribution over a response y € ) given an input feature vector
r € R%:

ps(y | ) € h(y)exp{yz-B— Alx-B)}, Luy(B) = —logps(y | ). (1)

Here, h(y) is a quantity independent of = and 3, A(-) is the log-partition function, and 2, ,, () is the
loss function (i.e., the negative log likelihood); Table 1 contains a summary of notation. Common
examples of GLMs include linear () = R), logistic () = {0, 1}), and Poisson (Y = {0,1,2,...})
regression.

Given n training examples (z;,y;), the standard maximum likelihood estimate B € R? minimizes
the empirical loss over the training examples:

(2)

With artificial feature noising, we replace the observed feature vectors x; with noisy versions z; =
v(z;,&;), where v is our noising function and §; is an independent random variable. We first create

many noisy copies of the dataset, and then average out the auxiliary noise. In this paper, we will
consider two types of noise:




Question: When does CNN work well and
when does it not?

ImageNet (ILSVRC competition) analysis

1. Detecting avocados to zucchinis: what have we done, and where are we going?
2. ImageNet Large Scale Visual Recognition Challenge
[Olga Russakovsky et al.]
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Slide credit:Fei-Fel Li




Image classification Image classification Image classification
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Image classification

Easiest classes
red fox (100) hen-of-the-woods (100) ibex (100)  goldfinch (100) flat-coated retriever (100)

-z

porpine(100) stingray (100) Blenheim spaniel (100)

= 7

Hardest classes
muzzle (71) hatchet (68) water bottle (68) velvet (68) loupe (66)

529
o kb
"TRTN

.

hdok (66)‘ spotlight (66) ladle (65) restaurant (64) letter opener (59)
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CNN vs. Human

[What | learned from competing against a ConvNet on ImageNet]
Karpathy, 2014: http://bit.ly/humanvsconvnet
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Try it out yourself: http://cs.stanford.edu/people/karpathy/ilsvrc/
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Human correct

Human wrong

GoogleNet correct

GoogleNet wrong

1352/1500

72/1500
* Objects very small or thin
* Abstract representations
* Image filters

46/1500

Fine-grained
recognition

Class unawareness
Insufficient training
data

30/1500

* Multiple objects
* Incorrect annotations

rule, ruler

pencil box, pencil case
rubber eraser, rubber
ballpoint, ballpoint pen
pencil sharpener
carpenter’s kit, tool kit

GooglLeNet: 6.7%
Team Human: 5.1% phew...

stethoscope
whistle

ice lolly, lolly
hair spray
maypole

schipperke
schipperke
pitcher, ewer groenendae|
coffeepot doormat. welcome mat
mask teddy, teddy bear
cup Jigsaw puzzle

Slide credit:Fei-Fel




Understanding the source of ConvNet performance

Visualizing and Understanding Convolutional Networks
[Zeiler and Fergus, 2013]

image size 224

13 13
filter size 7 ¢[3L\ ‘ ¢ 3
1 384 1 384 256
I . N N
lstride 2 3x3 max
pool 4096
stride 2 units

13

3 55
N 6 256

Input Image -

Layer3 Layer 4 Layer5 Layer6 Layer?7

Error %

Our replication of
(Krizhevsky et al., 2012), 1 convnet

Removed layers 3,4

Removed layer 7

Removed layers 6,7

Removed layer 3,4.6,7

Adjust layers 6,7: 2048 units

Adjust layers 6,7: 8192 units

Output
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Understanding the source of ConvNet performance
Visualizing and Understanding Convolutional Networks
[Zeiler and Fergus, 2013]

- Remove 2 FC layers (6,7): lose some small performance
- Remove 2 Conv layers (3,4): lose about equal performance
- Remove 2FC 2Conv (3,4,6,7): Very bad (71% error)

=> Depth is important

Error %

Our replication of

(Krizhevsky et al., 2012), 1 convnet
Removed layers 3,4

Removed layer 7

Removed layers 6,7

Removed layer 3,4,6,7

Adjust layers 6,7: 2048 units
Adjust layers 6,7: 8192 units

Slide credit:Fei-Fel Li




Understanding the source of ConvNet performance

Visualizing and Understanding Convolutional Networks
[Zeiler and Fergus, 2013]

image size 224

- Remove 2 FC layers (6,7): lose some small performance
- Remove 2 Conv layers (3,4): lose about equal performance
- Remove 2FC 2Conv (3,4,6,7): Very bad (71% error)

=> Depth is important

- Changing size of FC layers: little to no improvement
- Changing size of Conv layers: reasonable improvement!
N

Train Val Val
Error % Top-1 | Top-1 | Top-5

Our replication of
(Krizhevsky et al., 2012), 1 convnet 35.1 40.5 18.1

N

Removed layers 3,4 41.8 45.4 2211 Our Model (as per Fig. 3)

Removed layer 7 27.4 40.0 18.4 Adjust layers 6,7: 2048 units

Removed layers 6,7 274 44.8 22.4 Adjust layers 6,7: 8192 units

Removed layer 3,4,6,7 71.1 71.3 50.1 Adjust layers 3,4,5: 512,1024,512 maps

Adjust layers 6,7: 2048 units 40.3 41.7 18.8 Adjust layers 6,7: 8192 units and

Adjust layers 6,7: 8192 units 26.8 40.0 18.1 Layers 3,4,5: 512,1024,512 maps

Slide credit:Fei-Fel Li




GoogleNet

[Going deeper with convolutions, Szegedy et al., 2014]

GooglLeNet
12x less params than Krizhevsky et al.
=> ~5M params

Q: How to reduce the number of parameters?
A: Throw away the FC layers (only part of their answer (Inception module

After last pooling layer, volume is of size [7x7x1024]
Normally you would place the first 4096-D FC layer here (Many M param:

Instead: use Average pooling in each depth slice:

=> [1x1x1024]
performance actually improves 0.6% (less overfitting?)

Slide credit:Fei-Fel Li




Summary: What makes Convnets Tick

e -depth
- small filter sizes
- Conv layers > FC layers

Slide credit:Fei-Fel Li



Transfer Learning with CNNs

1. Train on —mage 2. If small dataset: fix | 3.Ifyou he!ve medium sized
Imagenet ~em™B all weights (treat CNN ~ewet dataset, “finetune” instead:

conv-64

maxpool as fixed feature e use the old weights as
 conv-128 extractor), retrain only { initialization, train the full
oz | the classifier | network or only some of the
—manposl | higher layers
~con®8_  i.e. swap the Softmax
“mampoot | lAYeEr at the end === retrain bigger portion of the
o —— network, or even all of it.

. conv-512
conv-512

| conv-512
_ maxpool tip: use only ~1/10th of
__FC-a096 the original learning rate
in finetuning to player,
and ~1/100th on
intermediate layers

Slide credit:Fei-Fel Li




conv-512
conv-512
max!mol

FC-4096

FC-4096
~ FC-1000
_ softmax

more generic

more specific

very similar
dataset

very different
dataset

very little data

Use Linear
Classifier on top
layer

You're in
trouble... Try
linear classifier
from different
stages

quite a lot of
data

Finetune a few
layers

Finetune a
larger number of
layers

Slide credit:Fei-Fel Li




Data Augmentation

1. Flip horizontally
2. Random crops/scales

3. Random mix/combinations of : - translation
- rotation
- stretching

- shearing,
- lens distortions, ... (go crazy)

4. Color jittering
(maybe even contrast jittering, etc.)

- Simple: Change contrast small amounts, jitter the color distributions,
etc.

- Vignette,... (go crazy)




Notice the more general theme:

1. Introduce a form of randomness in forward pass
2. Marginalize over the noise distribution during prediction

Data Augmentation,
Model Ensembles DropConnect




