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underfitting just right 

MLCV, Lecture 1: Regularization problem 

overfitting 
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Convolutional Networks 

Dropout 

Today: two regularization methods 
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Convolutional Networks 

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied 

to handwritten zip code recognition. Neural Computation, 1(4):541-551, Winter 1989 

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings 

of the IEEE, 1998. 

Convolutional Deep Belief Networks for Scalable Unsupervised 

Learning of Hierarchical Representations, H. Lee, R. Grosse, R. 

Ranganath, A. Y. Ng, ICML 2010 

Discriminative (supervised) 

Generative (unsupervised) 
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Minimal Convolutional Network 

RBM: 4 x 6 

# of Parameters  

C-RBM: 2 x 2   

inputs x outputs  block size x # of output types 

K. Murphy, Probabilistic Machine Learning 
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Weights and connections in a CNN 

In layer 1, we have 6 feature maps each of which has size 13 × 13. Each hidden node in one of these feature 

maps is computed by convolving the image with a 5×5 weight matrix, adding a bias, and passing the result 

through some form of nonlinearity.  

There are 13×13×6 = 1014 neurons and (5×5+1)×6 = 156 weights.  

In layer 2, we have 50 feature maps, each of which is obtained by convolving each feature map in layer 1 with a 5 

× 5 weight matrix, adding them up, adding a bias, and passing through a nonlinearity.  

There are 5 × 5 × 50 = 1250 neurons, (5 × 5 + 1) × 6 × 50 = 7800 weights, and 1250 × 26 = 32, 500 connections.  

Layer 3 is fully connected to layer 2, and has 100 neurons and 100 × (1250 + 1) = 125, 100 weights. 

Layer 4 is also fully connected, and has 10 neurons, and 10 × (100 + 1) = 1010 weights.  

Total: 3,215 neurons, 134,066 adjustable weights, and 184,974 connections. 

 (Simard et. al. 2003) 

K. Murphy, Probabilistic Machine Learning 
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Convolutional Neural Networks (aka ‘LeCun’ nets) 

http://yann.lecun.com/exdb/lenet/index.html 
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Convnet Successes 

• Handwritten text/digits 

– MNIST      (0.17% error [Ciresan et al. 2011]) 

– Arabic & Chinese   [Ciresan et al. 2012] 

 

• Simpler  recognition benchmarks 

– CIFAR-10  (9.3% error [Wan et al. 2013]) 

– Traffic sign recognition 

• 0.56% error vs 1.16% for humans [Ciresan et al. 2011] 

 

• But (until recently) less good at  

more complex datasets 

– E.g. Caltech-101/256 (few training examples)  
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Convolutional Neural Networks 

Bengio & Le Cun 



11 Recap of Convnets 

• Feed-forward:  

– Convolve input 

– Non-linearity (rectified linear) 

– Pooling (local max) 

• Supervised 

• Train convolutional filters by  

back-propagating classification error 
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Network connectivity 

Slide credits: M. A. Ranzatto 
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Network connectivity 
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Network connectivity 



26 

Network connectivity 
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Slide credits: A. Vedaldi 
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Network connectivity 
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Network connectivity 
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SIFT Descriptor 

Slide: R. Fergus 
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Spatial Pyramid Matching 

Slide: R. Fergus 
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Role of Pooling  
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Q.V. Le, J. Ngiam, Z. Chen, D. Chia, P. 

Koh, A.Y. Ng  

Tiled Convolutional Neural Networks. 

NIPS, 2010 
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Single Layer Architecture  

Slide: R. Fergus 
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Network connectivity 

Slide: M-A Ranzatto 
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http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx 

 “We realized that by modeling senones directly 

using DNNs, we had managed to outperform 

state-of-the-art conventional CD-GMM-HMM 

large-vocabulary  speech-recognition systems by 

a relative error reduction of more than 16 

percent. This is extremely significant when you 

consider that speech recognition has been an 

active research area for more than five 

decades.” 

Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary 

Speech Recognition, Dahl et. Al. 2011 

Breakthrough #1 

RBM pretraining + backpropagation 
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Convolutional models & deep networks 

Honglak Lee & Andrew Ng, ICML 2010 
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Dropout 
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MLCV, Lecture 4: Voting Methods 

• Give up idea of building `the’ classifier 

• Generate a group of base-learners which has higher accuracy when 

combined 

• Main tasks  

– Generating the learners 

– Combining them 



47 

MLCV, Lecture 4: Why should this work? 

• Committee of M predictors for target output  

 

• Output: true value + error 

 

• Average sum of squares error for m-th expert: 

 

 

• Average error of individual members: 

• Average error of committee: 

 

 

 

• If errors have zero mean and are uncorrelated: 

 

 then   
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Bootstrapped AGGregatING (BAGGING) 
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Dropout 

Each sample is processed by a ‘decimated’ neural net 

Decimated nets: distinct classifiers 

They should all do the same job 

Improving neural networks by preventing co-adaptation of feature detectors 

GE Hinton, N Srivastava, A Krizhevsky, I Sutskever, RR Salakhutdinov, arXiv, 2012, JMLR 2014 

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf 
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Dropout 

Improving neural networks by preventing co-adaptation of feature detectors 

GE Hinton, N Srivastava, A Krizhevsky, I Sutskever, RR Salakhutdinov, arXiv, 2012, JMLR 2014 

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf 
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Dropout block 

‘Feature noising’ 
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Test time: Deterministic approximation 

At test time, the weights are scaled as W(l) = pW(l) as 

shown in Figure 2. The resulting neural network is used 

without dropout. 

An expensive but more correct way of averaging the models is to 

sample k neural nets using dropout for each test case and 

average their predictions. As k → ∞, this Monte-Carlo model 

average gets close to the true model average.  

 

By computing the error for different values of k we can see how 

quickly the error rate of the finite-sample average approaches the 

error rate of the approximate model average. 
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Dropout performance 
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Dropout performance 
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Breakthrough #2 
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Dropout performance 
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Maxout (Goodfellow et al, 2013) 

http://www-etud.iro.umontreal.ca/~goodfeli/maxout.html 

In a convolutional network, a maxout feature map can be 

constructed by taking the maximum across k affine feature maps 

(i.e., pool across channels, in addition spatial locations) 

http://www-etud.iro.umontreal.ca/~goodfeli/maxout.html
http://www-etud.iro.umontreal.ca/~goodfeli/maxout.html
http://www-etud.iro.umontreal.ca/~goodfeli/maxout.html
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Maxout units vs. ReLU 
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Filters learned with maxout 
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Maxout vs. ReLUs 
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Maxout: responses are not sparse  

Dropout + ReLUs:  

sparse responses 

Why? Regularizer cost decreases 

Dropout + MaxOut:  

non-sparse responses 

How: units get stuck at zero  

(‘dead’ units) 

Why? No ‘0’ term among max-ed 

filters 
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Maxout does not have ‘dead units’ 

ReLUs: units get stuck below 0, never updated 

Maxout: always differentiable, with nonzero 

derivative 
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Question: When does CNN work well and 

when does it not?  

 

Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 
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GoogleNet 

Slide credit:Fei-Fei Li 
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Summary: What makes Convnets Tick 

• - depth 

- small filter sizes 

- Conv layers > FC layers  

 

Slide credit:Fei-Fei Li 



78 

Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 
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Data Augmentation 

1. Flip horizontally  

2. Random crops/scales  

3. Random mix/combinations of : - translation 

- rotation 

- stretching  

     - shearing, 

     - lens distortions, ... (go crazy)  

4. Color jittering 

(maybe even contrast jittering, etc.)  

-  Simple: Change contrast small amounts, jitter the color distributions, 

etc.  

-  Vignette,... (go crazy)  
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